Immunohistochemical distribution of glucose-dependent insulinotropic polypeptide in the adult rat brain. 2007

Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
The Institute of Neuroscience and Physiology, Section for Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden.

We have previously demonstrated that glucose-dependent insulinotropic polypeptide (GIP; gastric inhibitory polypeptide) is present in the adult rat hippocampus. This finding leads to the conclusion that all members of the secretin-glucagon family of gastrointestinal regulatory polypeptides can be found in the brain. To investigate the localization of GIP-producing cells, we used immunohistochemistry on sections of the adult rat brain. High levels of GIP immunoreactivity were observed in the olfactory bulb, hippocampus, and Purkinje cells in the cerebellum. Moreover, a moderate but distinct GIP immunoreactivity was observed in the cerebral cortex, amygdala, substantia nigra, and lateral septal nucleus as well as in several nuclei in the thalamus, hypothalamus, and brainstem. GIP immunoreactivity was frequently found to colocalize with the neuronal marker NeuN but never with the glial marker glial fibrillary acidic protein. Thus, GIP appears to be mainly neuronal to its distribution. This widespread distribution of GIP-immunoreactive cells suggests the involvement of GIP in various neuronal functions and suggests that GIP may act as a neurotransmitter or neuromodulator. This is the first characterization of the anatomical distribution of GIP-immunoreactive cells in the rat brain providing an anatomical framework for future investigations regarding the functions of GIP in the central nervous system.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse

Related Publications

Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
January 1999, Peptides,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
December 1996, The Journal of clinical investigation,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
August 2015, American journal of physiology. Regulatory, integrative and comparative physiology,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
January 2009, Vitamins and hormones,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
June 1994, Biochemical and biophysical research communications,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
September 2000, American journal of physiology. Gastrointestinal and liver physiology,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
December 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
November 2008, Obesity (Silver Spring, Md.),
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
January 2010, Vitamins and hormones,
Jenny Nyberg, and Calle Jacobsson, and Michelle F Anderson, and Peter S Eriksson
November 2011, Regulatory peptides,
Copied contents to your clipboard!