Anisotropy for spatial summation of elongated patches of grating: a tale of two tails. 2007

Tim S Meese, and Robert F Hess
School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK. t.s.meese@aston.ac.uk

Studies of spatial summation often use sinusoidal gratings with blurred edges. When the envelope is elongated (i) along the grating stripes and (ii) at right angles to the grating stripes, we refer to the stimuli as skunk-tails and tiger-tails respectively. Previous work [Polat & Tyler, 1999; Vision Research, 39, 887-895.] has found that sensitivity to skunk-tails is greater than for tiger-tails, but there have been several failures to replicate this result within a subset of the conditions. To address this we measured detection thresholds for skunk-tails, tiger-tails and squares of grating with sides matched to the lengths of the tails. For foveal viewing, we found a contrast sensitivity advantage in the order of 2dB for skunk-tails over tiger-tails, but only for horizontal gratings. For vertical gratings, sensitivity was very similar for both tail-types. When the stimuli were presented parafoveally (upper right visual field), a small advantage was found for skunk-tails over tiger-tails at both orientations, and spatial summation slopes were close to that of the ideal observer. We did not replicate the findings of Polat & Tyler, but our results are consistent with (i) those of Foley et al. [Foley, J. M., Varadharajan, S., Koh, C. C., & Farias, C. Q. (2007) Vision Research, 47, 85-107.] who used only vertical gratings and (ii) those from modelfest, where only horizontal gratings were used. The small effect of tail-type here suggests an anisotropy in the underlying physiology.

UI MeSH Term Description Entries
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D005403 Fixation, Ocular Positioning and accommodation of eyes that allows the image to be brought into place on the FOVEA CENTRALIS of each eye. Focusing, Ocular,Ocular Fixation,Eye Gaze,Eye Gazes,Gaze, Eye,Gazes, Eye,Ocular Focusing
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D005584 Fovea Centralis An area approximately 1.5 millimeters in diameter within the macula lutea where the retina thins out greatly because of the oblique shifting of all layers except the pigment epithelium layer. It includes the sloping walls of the fovea (clivus) and contains a few rods in its periphery. In its center (foveola) are the cones most adapted to yield high visual acuity, each cone being connected to only one ganglion cell. (Cline et al., Dictionary of Visual Science, 4th ed)
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual
D015348 Vision, Binocular The blending of separate images seen by each eye into one composite image. Binocular Vision
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast

Related Publications

Tim S Meese, and Robert F Hess
January 1978, Journal of the Optical Society of America,
Tim S Meese, and Robert F Hess
February 2001, Journal of the Optical Society of America. A, Optics, image science, and vision,
Tim S Meese, and Robert F Hess
June 1996, Optometry and vision science : official publication of the American Academy of Optometry,
Tim S Meese, and Robert F Hess
June 2016, The EMBO journal,
Tim S Meese, and Robert F Hess
September 1998, Nature,
Tim S Meese, and Robert F Hess
January 2016, Journal of pediatric neurosciences,
Tim S Meese, and Robert F Hess
June 2003, Trends in molecular medicine,
Tim S Meese, and Robert F Hess
January 2015, Indian journal of dermatology,
Tim S Meese, and Robert F Hess
January 1982, Vision research,
Tim S Meese, and Robert F Hess
January 2019, Soft matter,
Copied contents to your clipboard!