Specific regional distribution of protein arginine methyltransferase 8 (PRMT8) in the mouse brain. 2007

Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, Japan.

The regional distribution of PRMT8 transcript was examined in mouse brain using in situ hybridization (ISH) histochemistry. The PRMT8 cRNA probe was specifically hybridized with CNS and the signals were observed only in the neurons. The distribution of the neurons expressing PRMT8 mRNA was not even throughout the brain. All of the regions related to general somatosensory system expressed PRMT8 mRNA strongly. Most of the relay nuclei intervening the special somatosensory system, such as the auditory, visual, and vestibular systems, were packed with PRMT8 mRNA expressing neurons. Forebrain limbic areas and thalamic nuclei relevant to limbic areas were also strongly labeled with the probe. Some areas related to the motor system, such as the caudate putamen, Purkinje cells, inferior olivary nucleus and cerebellar nuclei expressed PRMT8 mRNA strongly. These findings suggest that PRMT8 is chiefly involved in the somatosensory and limbic systems, and a part of motor system.

UI MeSH Term Description Entries
D008032 Limbic System A set of forebrain structures common to all mammals that is defined functionally and anatomically. It is implicated in the higher integration of visceral, olfactory, and somatic information as well as homeostatic responses including fundamental survival behaviors (feeding, mating, emotion). For most authors, it includes the AMYGDALA; EPITHALAMUS; GYRUS CINGULI; hippocampal formation (see HIPPOCAMPUS); HYPOTHALAMUS; PARAHIPPOCAMPAL GYRUS; SEPTAL NUCLEI; anterior nuclear group of thalamus, and portions of the basal ganglia. (Parent, Carpenter's Human Neuroanatomy, 9th ed, p744; NeuroNames, http://rprcsgi.rprc.washington.edu/neuronames/index.html (September 2, 1998)). Limbic Systems,System, Limbic,Systems, Limbic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009833 Olfactory Pathways Set of nerve fibers conducting impulses from olfactory receptors to the cerebral cortex. It includes the OLFACTORY NERVE; OLFACTORY BULB; OLFACTORY TRACT; OLFACTORY TUBERCLE; ANTERIOR PERFORATED SUBSTANCE; and OLFACTORY CORTEX. Olfactory Pathway,Pathway, Olfactory,Pathways, Olfactory
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011484 Protein-Arginine N-Methyltransferases Enzymes that catalyze the methylation of arginine residues of proteins to yield N-mono- and N,N-dimethylarginine. This enzyme is found in many organs, primarily brain and spleen. Protein Arginine Methyltransferase,Protein Methylase I,Protein Methyltransferase I,Protein-Arginine N-Methyltransferase,(Myelin Basic Protein)-Arginine N-Methyltransferase,Arginine Methylase,Myelin Basic Protein (Arginine) Methyltransferase,Type I Protein Arginine Methyltransferase,Type I Protein Arginine N-Methyltransferase,Type II Protein Arginine Methyltransferase,Arginine Methyltransferase, Protein,Methyltransferase, Protein Arginine,Protein Arginine N Methyltransferase,Protein Arginine N Methyltransferases,Type I Protein Arginine N Methyltransferase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
December 2007, The Journal of biological chemistry,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
September 2013, The Journal of biological chemistry,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
September 2005, The Journal of biological chemistry,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
October 2021, Life (Basel, Switzerland),
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
September 2008, International journal of molecular medicine,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
August 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
January 1982, Pharmacology, biochemistry, and behavior,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
December 2015, Biochemistry,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
June 2020, Cell reports,
Tsuya Taneda, and Shingo Miyata, and Aoi Kousaka, and Kiyoshi Inoue, and Yoshihisa Koyama, and Yasutake Mori, and Masaya Tohyama
January 2013, PloS one,
Copied contents to your clipboard!