Glutamine directly downregulates glutamine synthetase protein levels in mouse C2C12 skeletal muscle myotubes. 2007

Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
Department of Nutritional Sciences, Cook College, Rutgers University, New Brunswick, NJ 08901, USA.

This study examined the regulation of glutamine synthetase protein levels, in response to changes in external glutamine concentration, in mouse C2C12 skeletal muscle cells. Glutamine, at concentrations as low as 0.25 mmol/L, downregulated endogenous and exogenous (plasmid encoded) glutamine synthetase with maximal effect at 2 mmol/L. Glutamine appears to act by changing the stability of the glutamine synthetase protein, and the effect was partially blocked by the proteasome inhibitor MG132. The addition of the glutamine structural analog and glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine, in the presence or absence of glutamine, also resulted in low glutamine synthetase protein levels. Otherwise, the effect was specific for glutamine, and the only compounds able to mimic the effect of glutamine were amino acids, glutamate, alanine, and ornithine, which can be converted to glutamine. Other amino acids, analogs, and products of glutamine metabolism were without effect. Methionine sulfoximine, an inhibitor of glutamine synthetase, stabilized the protein and prevented the glutamine effect. Thus, in mouse C2C12 skeletal muscle cells, glutamine synthetase protein expression is regulated by glutamine through changes in the rate of degradation of the protein. The effect is specific to glutamine, which acts directly without requiring prior metabolism.

UI MeSH Term Description Entries
D007976 Leupeptins A group of acylated oligopeptides produced by Actinomycetes that function as protease inhibitors. They have been known to inhibit to varying degrees trypsin, plasmin, KALLIKREINS, papain and the cathepsins.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D005974 Glutamate-Ammonia Ligase An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2. Glutamine Synthetase,Glutamate Ammonia Ligase (ADP),Glutamate Ammonia Ligase,Ligase, Glutamate-Ammonia,Synthetase, Glutamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015853 Cysteine Proteinase Inhibitors Exogenous and endogenous compounds which inhibit CYSTEINE ENDOPEPTIDASES. Acid Cysteine Proteinase Inhibitor,Cysteine Protease Inhibitor,Cysteine Protease Inhibitors,Cysteine Proteinase Antagonist,Cysteine Proteinase Antagonists,Cysteine Proteinase Inhibitor,Cysteine Proteinase Inhibitors, Endogenous,Cysteine Proteinase Inhibitors, Exogenous,alpha-Cysteine Protease Inhibitor,Acid Cysteine Proteinase Inhibitors,alpha-Cysteine Protease Inhibitors,Antagonist, Cysteine Proteinase,Antagonists, Cysteine Proteinase,Inhibitor, Cysteine Protease,Inhibitor, Cysteine Proteinase,Inhibitor, alpha-Cysteine Protease,Inhibitors, Cysteine Protease,Inhibitors, Cysteine Proteinase,Inhibitors, alpha-Cysteine Protease,Protease Inhibitor, Cysteine,Protease Inhibitor, alpha-Cysteine,Protease Inhibitors, Cysteine,Protease Inhibitors, alpha-Cysteine,Proteinase Antagonist, Cysteine,Proteinase Antagonists, Cysteine,Proteinase Inhibitor, Cysteine,Proteinase Inhibitors, Cysteine,alpha Cysteine Protease Inhibitor,alpha Cysteine Protease Inhibitors
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
September 2020, International journal of molecular sciences,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
June 2019, Biochemical pharmacology,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
April 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
May 2023, Toxicology,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
January 2010, American journal of physiology. Regulatory, integrative and comparative physiology,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
February 1997, Cell structure and function,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
February 2009, The journal of medical investigation : JMI,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
November 1990, Journal of cellular physiology,
Yi-Fang Huang, and Yanxin Wang, and Malcolm Watford
June 2017, American journal of physiology. Cell physiology,
Copied contents to your clipboard!