Development of visual inhibitory interactions in kittens. 1991

M C Morrone, and H D Speed, and D C Burr
Scuola Normale Superiore, Pisa, Italy.

This study was designed to monitor the development of inhibitory interactions elicited in the cat visual system by oriented visual stimuli. Steady-state visual-evoked potentials (VEPs) were recorded from the scalp of 11 behaving and alert kittens while they viewed contrast-reversed sinusoidal gratings. In adult cats, the form of VEP contrast-response curves (the amplitude of second harmonic modulation as a function of stimulus contrast) was modified by superimposing a mask grating on the test. Parallel masks displaced the curves to a higher contrast region (probably via contrast gain-control mechanisms), increasing contrast threshold without affecting the slope of the curve. Orthogonal gratings, on the other hand, decrease the slope of the curve without affecting threshold (so called cross-orientation inhibition: Morrone et al., 1981). These effects are similar to those previously reported in human VEPs (Morrone & Burr, 1986; Burr & Morrone, 1987) and single cortical cat cells (Morrone et al., 1982). For young kittens of 20 days, the orthogonal mask had no effect whatsoever on the response curves, and the effect of the parallel mask was much less than for adult cats. At about 40 days, the orthogonal mask began to attenuate responses multiplicatively, and by 50 days the amount of multiplicative attenuation had reached adult levels. The effect of the parallel mask (as indicated by the increase in threshold elevation) increased gradually from 20-50 days. The results are consistent with the existence of at least two types of inhibition in cat visual neurones that develop at different rates.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast

Related Publications

M C Morrone, and H D Speed, and D C Burr
February 1979, The Quarterly journal of experimental psychology,
M C Morrone, and H D Speed, and D C Burr
January 1976, Vision research,
M C Morrone, and H D Speed, and D C Burr
April 1976, Nature,
M C Morrone, and H D Speed, and D C Burr
January 1979, Child: care, health and development,
M C Morrone, and H D Speed, and D C Burr
April 1975, Nature,
M C Morrone, and H D Speed, and D C Burr
July 1960, Journal of neurophysiology,
M C Morrone, and H D Speed, and D C Burr
January 1974, Experimental brain research,
M C Morrone, and H D Speed, and D C Burr
January 1976, Vision research,
M C Morrone, and H D Speed, and D C Burr
October 1969, Nutrition reviews,
Copied contents to your clipboard!