Left ventricular volume measurement by the conductance catheter and variations in the hematocrit in small animals. 2007

Werner Heimisch, and Hubert Schad, and Ralf Günzinger
Department of Cardiac and Vascular Surgery, Deutsches Herzzentrum München, Clinic at the Technical University, Lazarettstr. 36, 80636 Munich, Germany. heimisch@dhm.mhn.de

Cardiac performance is quantitatively and continuously assessed from pressure-volume signals by using the conductance catheter technique even in small animals. Conductivity of blood, however, is dependent on hematocrit (Hct). Interdependence between hematocrit and volume measurement by the conductance catheter has been evaluated. In 12 male Wistar rats weighing 400-475 g, anesthetized and artificially ventilated, Hct was gradually lowered by isovolumic hemodilution ranging from 50% to 7%. Heparinized blood samples were drawn at decreasing Hct levels for centrifugation, for automated Hct measurement by a blood gas analyzer, and for conductance catheter volume measurements (CCV) in calibrated cuvettes. Substitution of about 2 ml colloid solution lowered the Hct initially from 47 +/- 2% to 36 +/- 3%; at the same time, CCV output rose by 36 +/- 14% for definite blood volume. There is a strong inverse linear relationship (absolute value of r > 0.96; P < 0.0001) between relative volume units (RVU) displayed by the volume acquisition device and the hematocrit for any calibrated blood cuvette. Slopes of the regression lines increase proportionally to the calibration volumes (28.3 microl: -0.25; 63.6 microl: -0.57; 113.1 microl: -0.92). These data document the direct interdependence between Hct and CCV. Consequently, careful Hct correction of the RVU recordings is necessary especially in small animals where even small amounts of substituted solutions result in a marked decrease in Hct and, thus, in pronounced blood volume misreadings.

UI MeSH Term Description Entries
D008297 Male Males
D010992 Plethysmography, Impedance Recording changes in electrical impedance between electrodes placed on opposite sides of a part of the body, as a measure of volume changes in the path of the current. (Stedman, 25th ed) Rheography,Impedance Plethysmography,Impedance Plethysmographies,Plethysmographies, Impedance,Rheographies
D006328 Cardiac Catheterization Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures. Catheterization, Cardiac,Catheterization, Heart,Heart Catheterization,Cardiac Catheterizations,Catheterizations, Cardiac,Catheterizations, Heart,Heart Catheterizations
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016277 Ventricular Function, Left The hemodynamic and electrophysiological action of the left HEART VENTRICLE. Its measurement is an important aspect of the clinical evaluation of patients with heart disease to determine the effects of the disease on cardiac performance. Left Ventricular Function,Function, Left Ventricular,Functions, Left Ventricular,Left Ventricular Functions,Ventricular Functions, Left

Related Publications

Werner Heimisch, and Hubert Schad, and Ralf Günzinger
November 1984, Circulation,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
October 2003, American journal of physiology. Heart and circulatory physiology,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
February 1996, Japanese circulation journal,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
July 2007, American journal of physiology. Heart and circulatory physiology,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
January 1992, Pediatric research,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
November 1992, European heart journal,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
May 2003, Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
April 1995, The American journal of physiology,
Werner Heimisch, and Hubert Schad, and Ralf Günzinger
March 2001, Scandinavian cardiovascular journal : SCJ,
Copied contents to your clipboard!