Somatic mutations of mitochondrial genome in early stage breast cancer. 2007

Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
Laboratory of Cellular and Molecular Evolution, and Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.

The complete mitochondrial genomes of the primary cancerous, matched paracancerous normal and distant normal tissues from 10 early-stage breast cancer patients were analyzed in this study, with special attempt (i) to investigate whether the reported high frequency of mitochondrial DNA (mtDNA) somatic mutations in breast cancer could be repeated under a stringent data quality control, and (ii) to characterize the spectrum of mtDNA somatic mutations in Chinese breast cancer patients and evaluate their potential significance in early cancer diagnosis. Two heteroplasmic somatic transitions (T2275C and A8601G) were identified in our samples. The transition A8601G was present in the primary cancerous and paracancerous normal tissues from patient no. 3. Transition T2275C was found in the primary cancerous tissue but not in other normal tissues from patient no. 6; this transition has been reported in the colonic crypts and is located at a highly conserved site in the 16S rRNA gene. Subsequent cloning sequencing confirmed the absence of both mutations in the distant normal tissues from the 2 patients. The overall rate of somatic mutations in our patients was much lower than those of previous studies of breast cancer. Our results gave support to the recent claim that the high frequency of mtDNA somatic mutations in cancer studies is overestimated. Based on the mtDNA mutation pattern in early stage breast cancer observed in this study, we cautioned the enthusiasm and efforts to look for somatic mutations that were of diagnostic value in cancer early detection.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
October 2011, Genes, chromosomes & cancer,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
April 2021, JNCI cancer spectrum,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
April 2018, Oncotarget,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
February 2002, Cancer research,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
March 2010, Mitochondrion,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
June 2016, Nature,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
October 2008, BMC cancer,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
August 2001, Oncogene,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
November 1998, Nature genetics,
Cheng-Ye Wang, and Hua-Wei Wang, and Yong-Gang Yao, and Qing-Peng Kong, and Ya-Ping Zhang
April 2012, British journal of cancer,
Copied contents to your clipboard!