The role of cyclooxygenase in the feline pulmonary vascular bed. 2007

Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA. akaye@lsuhsc.edu

OBJECTIVE There are extensive data on roles of cyclooxygenase 1 (COX 1) and cyclooxygenase 2 (COX 2) enzymes in temperature, coagulation, and inflammatory modulation. There is little known of the function of these enzymes in regulating tone in pulmonary vasculature. The purpose of this investigation was to elucidate the roles of COX 1 and 2 enzymes in the feline pulmonary vascular bed. METHODS Prospective vehicle controlled study. METHODS University research laboratory. METHODS Intact chest preparation; adult mongrel cats. METHODS The effects of intravascular administration of U46619, angiotensin II, prostaglandin E1 (PGE1), arachidonic acid, and norepinephrine, were analyzed before and after intravascular administration of selective COX enzyme inhibitors. RESULTS Because lobar arterial flow is constant in these experiments, changes in lobar pressure represent changes in pulmonary arterial resistance. Under constant flow conditions, lobar arterial and systemic pressures were continuously monitored, electronically averaged, and recorded. In the isolated left lower lobe of the feline lung bed, U46619, angiotensin II, arachidonic acid, and norepinephrine induced a dose-dependent vasoconstrictor response. PGE1 induced a dose-dependent vasodepressor response. After administration of the COX 1 inhibitor SC 560, the arachidonic acid-induced vasopressor responses were significantly attenuated while U46619, angiotensin II, and norepinephrine-induced vasopressor, and PGE1-induced vasodepressor responses were not significantly altered. After administration of the COX 2 inhibitor nimesulide, both the PGE 1 vasodepressor responses and arachidonic acid-induced vasopressor responses were significantly decreased while the U46619, angiotensin II, and norepinephrine-induced vasopressor responses were not significantly attenuated. CONCLUSIONS The results of the study indicate that PGE1 has potent vasodepressor effects in the feline lung bed and this response is mediated by COX 2 pathways. The data also suggest that arachidonic acid has potent vasopressor activity in the feline pulmonary vascular bed and this response is mediated by both COX 1 and COX 2 sensitive pathways.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000527 Alprostadil A potent vasodilator agent that increases peripheral blood flow. PGE1,Prostaglandin E1,Caverject,Edex,Lipo-PGE1,Minprog,Muse,PGE1alpha,Prostaglandin E1alpha,Prostavasin,Prostin VR,Prostine VR,Sugiran,Vasaprostan,Viridal,Lipo PGE1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014662 Vasoconstrictor Agents Drugs used to cause constriction of the blood vessels. Vasoactive Agonist,Vasoactive Agonists,Vasoconstrictor,Vasoconstrictor Agent,Vasoconstrictor Drug,Vasopressor Agent,Vasopressor Agents,Vasoconstrictor Drugs,Vasoconstrictors,Agent, Vasoconstrictor,Agent, Vasopressor,Agents, Vasoconstrictor,Agents, Vasopressor,Agonist, Vasoactive,Agonists, Vasoactive,Drug, Vasoconstrictor,Drugs, Vasoconstrictor
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin

Related Publications

Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
August 1984, Prostaglandins,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
February 1995, The American journal of physiology,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
April 1997, The American journal of physiology,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
July 1980, The American journal of physiology,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
May 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
February 1991, European journal of pharmacology,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
January 1995, Critical care medicine,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
January 1980, Advances in prostaglandin and thromboxane research,
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
December 2003, Journal of alternative and complementary medicine (New York, N.Y.),
Alan D Kaye, and Jason M Hoover, and Aaron J Kaye, and Ikhlass N Ibrahim, and James Phelps, and Amir Baluch
July 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!