Defined protein and animal component-free NS0 fed-batch culture. 2007

Erika Spens, and Lena Häggström
School of Biotechnology, Department of Bioprocess Technology, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden.

A chemically defined protein and animal component-free fed-batch process for an NS0 cell line producing a human IgG(1) antibody has been developed. The fed-batch feed profile was optimised in a step-wise manner. Depletion of measurable compounds was determined by direct analysis. The cellular need for non-measurable compounds was tested by continued culturing of cell suspension, removed from the bioreactor, in shake-flasks supplemented with critical substances. In the final fed-batch culture, 8.4 x 10(6) viable cells mL(-1) and 625 mg antibody L(-1) was obtained as compared to 2.3 x 10(6) cells mL(-1) and 70 mg antibody L(-1) in batch. The increase in cell density, in combination with a prolonged declining phase where antibody formation continued, resulted in a 6.2-fold increase in total cell yield, a 10.5-fold increase in viable cell hours and an 11.4-fold increase in product yield. These improvements were obtained by using a feed with glucose, glutamine, amino acids, lipids, sodium selenite, ethanolamine and vitamins. Specifically, supplementation with lipids (cholesterol) had a drastic effect on the maximum viable cell density. Calcium, magnesium and potassium were not depleted and a feed also containing iron, lithium, manganese, phosphorous and zinc did not significantly enhance the cell yield. The growth and death profiles in the final fed-batch indicated that nutrient deprivation was not the main cause of cell death. The ammonium concentration and the osmolality increased to potentially inhibitory levels, but an imbalance in the supply of growth/survival factors may also contribute to termination of the culture.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007218 Industrial Microbiology The study, utilization, and manipulation of those microorganisms capable of economically producing desirable substances or changes in substances, and the control of undesirable microorganisms. Microbiology, Industrial
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D014815 Vitamins Organic substances that are required in small amounts for maintenance and growth, but which cannot be manufactured by the human body. Vitamin
D016895 Culture Media, Serum-Free CULTURE MEDIA free of serum proteins but including the minimal essential substances required for cell growth. This type of medium avoids the presence of extraneous substances that may affect cell proliferation or unwanted activation of cells. Protein-Free Media,Serum-Free Media,Low-Serum Media,Culture Media, Serum Free,Low Serum Media,Media, Low-Serum,Media, Protein-Free,Media, Serum-Free,Media, Serum-Free Culture,Protein Free Media,Serum Free Media,Serum-Free Culture Media
D019149 Bioreactors Tools or devices for generating products using the synthetic or chemical conversion capacity of a biological system. They can be classical fermentors, cell culture perfusion systems, or enzyme bioreactors. For production of proteins or enzymes, recombinant microorganisms such as bacteria, mammalian cells, or insect or plant cells are usually chosen. Fermentors,Bioreactor,Fermentor

Related Publications

Erika Spens, and Lena Häggström
January 2010, Biotechnology progress,
Erika Spens, and Lena Häggström
February 2007, Biotechnology and bioengineering,
Erika Spens, and Lena Häggström
September 1997, Biotechnology and bioengineering,
Erika Spens, and Lena Häggström
January 2011, Biotechnology progress,
Erika Spens, and Lena Häggström
January 2000, Biotechnology progress,
Erika Spens, and Lena Häggström
June 2007, Biotechnology and bioengineering,
Erika Spens, and Lena Häggström
September 1996, Biotechnology and bioengineering,
Erika Spens, and Lena Häggström
March 2007, Bioprocess and biosystems engineering,
Copied contents to your clipboard!