Cure rate model with interval censored data. 2008

Yang-Jin Kim, and Myoungshic Jhun
Institute of Statistics, Korea University, Seoul 136-701, Korea.

In cancer trials, a significant fraction of patients can be cured, that is, the disease is completely eliminated, so that it never recurs. In general, treatments are developed to both increase the patients' chances of being cured and prolong the survival time among non-cured patients. A cure rate model represents a combination of cure fraction and survival model, and can be applied to many clinical studies over several types of cancer. In this article, the cure rate model is considered in the interval censored data composed of two time points, which include the event time of interest. Interval censored data commonly occur in the studies of diseases that often progress without symptoms, requiring clinical evaluation for detection (Encyclopedia of Biostatistics. Wiley: New York, 1998; 2090-2095). In our study, an approximate likelihood approach suggested by Goetghebeur and Ryan (Biometrics 2000; 56:1139-1144) is used to derive the likelihood in interval censored data. In addition, a frailty model is introduced to characterize the association between the cure fraction and survival model. In particular, the positive association between the cure fraction and the survival time is incorporated by imposing a common normal frailty effect. The EM algorithm is used to estimate parameters and a multiple imputation based on the profile likelihood is adopted for variance estimation. The approach is applied to the smoking cessation study in which the event of interest is a smoking relapse and several covariates including an intensive care treatment are evaluated to be effective for both the occurrence of relapse and the non-smoking duration.

UI MeSH Term Description Entries
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D016015 Logistic Models Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor. Logistic Regression,Logit Models,Models, Logistic,Logistic Model,Logistic Regressions,Logit Model,Model, Logistic,Model, Logit,Models, Logit,Regression, Logistic,Regressions, Logistic
D016016 Proportional Hazards Models Statistical models used in survival analysis that assert that the effect of the study factors on the hazard rate in the study population is multiplicative and does not change over time. Cox Model,Cox Proportional Hazards Model,Hazard Model,Hazards Model,Hazards Models,Models, Proportional Hazards,Proportional Hazard Model,Proportional Hazards Model,Cox Models,Cox Proportional Hazards Models,Hazard Models,Proportional Hazard Models,Hazard Model, Proportional,Hazard Models, Proportional,Hazards Model, Proportional,Hazards Models, Proportional,Model, Cox,Model, Hazard,Model, Hazards,Model, Proportional Hazard,Model, Proportional Hazards,Models, Cox,Models, Hazard,Models, Hazards,Models, Proportional Hazard
D016540 Smoking Cessation Discontinuing the habit of SMOKING. Giving Up Smoking,Quitting Smoking,Stopping Smoking,Cessation, Smoking,Smoking Cessations,Smoking, Giving Up,Smoking, Quitting,Smoking, Stopping,Smokings, Giving Up,Up Smoking, Giving

Related Publications

Yang-Jin Kim, and Myoungshic Jhun
January 2022, Statistical methods in medical research,
Yang-Jin Kim, and Myoungshic Jhun
December 2023, Statistical methods in medical research,
Yang-Jin Kim, and Myoungshic Jhun
September 2013, Biometrical journal. Biometrische Zeitschrift,
Yang-Jin Kim, and Myoungshic Jhun
July 2019, Biometrical journal. Biometrische Zeitschrift,
Yang-Jin Kim, and Myoungshic Jhun
December 2009, Journal of the American Statistical Association,
Yang-Jin Kim, and Myoungshic Jhun
October 2017, Statistical methods in medical research,
Yang-Jin Kim, and Myoungshic Jhun
January 2018, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America,
Yang-Jin Kim, and Myoungshic Jhun
April 2011, Statistics in medicine,
Yang-Jin Kim, and Myoungshic Jhun
March 2004, Biometrics,
Yang-Jin Kim, and Myoungshic Jhun
April 2024, Lifetime data analysis,
Copied contents to your clipboard!