The chemokine Sdf-1 and its receptor Cxcr4 are required for formation of muscle in zebrafish. 2007

Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
Laboratory of Fish Developmental Biology, Institute of Molecular and Cell Biology, Proteos, Singapore. shangwei@imcb.a-star.edu.sg <shangwei@imcb.a-star.edu.sg>

BACKGROUND During development cell migration takes place prior to differentiation of many cell types. The chemokine receptor Cxcr4 and its ligand Sdf1 are implicated in migration of several cell lineages, including appendicular muscles. RESULTS We dissected the role of sdf1-cxcr4 during skeletal myogenesis. We demonstrated that the receptor cxcr4a is expressed in the medial-anterior part of somites, suggesting that chemokine signaling plays a role in this region of the somite. Previous reports emphasized co-operation of Sdf1a and Cxcr4b. We found that during early myogenesis Sdf1a co-operates with the second Cxcr4 of zebrafish - Cxcr4a resulting in the commitment of myoblast to form fast muscle. Disrupting this chemokine signal caused a reduction in myoD and myf5 expression and fast fiber formation. In addition, we showed that a dimerization partner of MyoD and Myf5, E12, positively regulates transcription of cxcr4a and sdf1a in contrast to that of Sonic hedgehog, which inhibited these genes through induction of expression of id2. CONCLUSIONS We revealed a regulatory feedback mechanism between cxcr4a-sdf1a and genes encoding myogenic regulatory factors, which is involved in differentiation of fast myofibers. This demonstrated a role of chemokine signaling during development of skeletal muscles.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015027 Zebrafish An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. Zebrafish is a model organism for drug assay and cancer research. Brachydanio rerio,Danio rerio,B. rerio,D. rerio,Zebra Fish,Zebra Fishes,Zebra danio,Zebrafishes,D. rerios,Fishes, Zebra,Zebra danios,danio, Zebra
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D054377 Chemokine CXCL12 A CXC chemokine that is chemotactic for T-LYMPHOCYTES and MONOCYTES. It has specificity for CXCR4 RECEPTORS. Two isoforms of CXCL12 are produced by alternative mRNA splicing. CXCL12 Chemokine,Stromal Cell-Derived Factor-1beta,Chemokine (C-X-C Motif) Ligand 12,Pre-B-Cell Growth-Stimulating Factor,SDF-1alpha,SDF-1beta,SDF1-3'A,Stromal Cell-Derived Factor 1,Stromal Cell-Derived Factor-1alpha,CXCL12, Chemokine,Cell-Derived Factor-1beta, Stromal,Chemokine, CXCL12,Growth-Stimulating Factor, Pre-B-Cell,Pre B Cell Growth Stimulating Factor,SDF 1alpha,SDF 1beta,SDF1 3'A,Stromal Cell Derived Factor 1,Stromal Cell Derived Factor 1alpha,Stromal Cell Derived Factor 1beta
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D018656 Muscle Fibers, Fast-Twitch Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers

Related Publications

Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
September 1999, Developmental biology,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
April 2001, [Rinsho ketsueki] The Japanese journal of clinical hematology,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
December 2001, Annals of the New York Academy of Sciences,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
April 2004, Neuromuscular disorders : NMD,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
December 1997, Seikagaku. The Journal of Japanese Biochemical Society,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
October 2006, Development genes and evolution,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
April 2003, Molecular vision,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
October 2007, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
May 1998, Current biology : CB,
Shang-Wei Chong, and Le-Minh Nguyet, and Yun-Jin Jiang, and Vladimir Korzh
January 2011, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society,
Copied contents to your clipboard!