Corticotropin releasing hormone receptor alterations elicited by acute and chronic unpredictable stressor challenges in stressor-susceptible and resilient strains of mice. 2007

Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada. hanisman@ccs.carleton.ca <hanisman@ccs.carleton.ca>

Stressors increase corticotropin releasing hormone (CRH) functioning in hypothalamic and frontal cortical brain regions, and thus may contribute to the provocation of anxiety and depressive disorder. As the effects of stressors on these behavioral changes are more pronounced in some strains of mice (e.g., BALB/cByJ) than in others (e.g., C57BL/6ByJ), the present investigation assessed whether acute and chronic stressors would differentially influence CRH receptor immunoreactivity (ir-CRHr) and CRH receptor mRNA expression (CRH(1) and CRH(2)) in the orbital frontal cortex (OFC) of these strains. An acute noise stressor, and to a greater extent a chronic, variable stressor regimen reduced ir-CRHr in BALB/cByJ mice. In contrast, in the hardier C57BL/6ByJ mice the acute stressor increased ir-CRHr in portions of the OFC, whereas a chronic stressor tended to reduce ir-CRHr. However, whereas the acute stressor did not influence CRH(1) mRNA expression, the chronic stressor increased CRH(1) mRNA expression in both mouse strains. The CRH(2) expression appeared in low abundance in both strains and was unaltered by the stressor. In addition to the OFC variations, quantitative immunohistochemistry indicated that the chronic stressor treatment increased CRH immunoreactivity in the median eminence of C57BL/6ByJ mice, but co-expression of CRH and arginine vasopressin (AVP) immunoreactivity was not provoked by the stressors. The data support the view that stressors provoke marked variations of ir-CRHr in the OFC that might contribute to the differential anxiety/depression-like profiles ordinarily apparent in the stressor-vulnerable and -resilient mouse strains.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003863 Depression Depressive states usually of moderate intensity in contrast with MAJOR DEPRESSIVE DISORDER present in neurotic and psychotic disorders. Depressive Symptoms,Emotional Depression,Depression, Emotional,Depressive Symptom,Symptom, Depressive
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
February 2003, Biological psychiatry,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
August 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
July 1998, Stress (Amsterdam, Netherlands),
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
January 1995, Advances in neuroimmunology,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
January 2020, Neuroreport,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
November 2002, The European journal of neuroscience,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
July 2017, The Journal of experimental medicine,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
October 1995, FEBS letters,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
June 1997, The Journal of clinical investigation,
Hymie Anisman, and Priya Prakash, and Zul Merali, and Michael O Poulter
December 1999, Biological psychiatry,
Copied contents to your clipboard!