Role of laminin terminal globular domains in basement membrane assembly. 2007

Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.

Laminins contribute to basement membrane assembly through interactions of their N- and C-terminal globular domains. To further analyze this process, recombinant laminin-111 heterotrimers with deletions and point mutations were generated by recombinant expression and evaluated for their ability to self-assemble, interact with nidogen-1 and type IV collagen, and form extracellular matrices on cultured Schwann cells by immunofluorescence and electron microscopy. Wild-type laminin and laminin without LG domains polymerized in contrast to laminins with deleted alpha1-, beta1-, or gamma1-LN domains or with duplicated beta1- or alpha1-LN domains. Laminins with a full complement of LN and LG domains accumulated on cell surfaces substantially above those lacking either LN or LG domains and formed a lamina densa. Accumulation of type IV collagen onto the cell surface was found to require laminin with separate contributions arising from the presence of laminin LN domains, nidogen-1, and the nidogen-binding site in laminin. Collectively, the data support the hypothesis that basement membrane assembly depends on laminin self-assembly through formation of alpha-, beta-, and gamma-LN domain complexes and LG-mediated cell surface anchorage. Furthermore, type IV collagen recruitment into the laminin extracellular matrices appears to be mediated through a nidogen bridge with a lesser contribution arising from a direct interaction with laminin.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions

Related Publications

Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
March 1990, The Journal of cell biology,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
February 2005, Proceedings of the National Academy of Sciences of the United States of America,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
March 2004, The Journal of cell biology,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
February 2006, Developmental biology,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
August 2007, The Journal of biological chemistry,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
September 2013, The British journal of dermatology,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
December 1992, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
July 2001, Archives of dermatological research,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
December 1998, Cell,
Karen K McKee, and David Harrison, and Stephanie Capizzi, and Peter D Yurchenco
March 1984, European journal of biochemistry,
Copied contents to your clipboard!