Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor. 2007

Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.

When dopamine D1 and D2 receptors were coactivated in D1-D2 receptor hetero-oligomeric complexes, a novel phospholipase C-mediated calcium signal was generated. In this report, desensitization of this Gq/11-mediated calcium signal was demonstrated by pretreatment with dopamine or with the D1-selective agonist (+/-)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) or the D2-selective agonist quinpirole. Desensitization of the calcium signal mediated by D1-D2 receptor hetero-oligomers was initiated by agonist occupancy of either receptor subtype even though the signal was generated only by occupancy of both receptors. The efficacy, potency, and rate of calcium signal desensitization by agonist occupancy of the D1 receptor (t1/2, approximately 1 min) was far greater than by the D2 receptor (t1/2, approximately 10 min). Desensitization of the calcium signal was not mediated by depletion of calcium stores or internalization of the hetero-oligomer and was not decreased by inhibiting second messenger-activated kinases. The involvement of G protein-coupled receptor kinases 2 or 3, but not 5 or 6, in the desensitization of the calcium signal was shown, occurring through a phosphorylation independent mechanism. Inhibition of Gi protein function associated with D2 receptors increased D1 receptor-mediated desensitization of the calcium signal, suggesting that cross-talk between the signals mediated by the activation of different G proteins controlled the efficacy of calcium signal desensitization. Together, these results demonstrate the desensitization of a signal mediated only by hetero-oligomerization of two G protein-coupled receptors that was initiated by agonist occupancy of either receptor within the hetero-oligomer, albeit with differences in desensitization profiles observed.

UI MeSH Term Description Entries
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D051552 beta-Adrenergic Receptor Kinases G-protein-coupled receptor kinases that mediate agonist-dependent PHOSPHORYLATION and desensitization of BETA-ADRENERGIC RECEPTORS. beta-Adrenergic Receptor Kinase,beta-AR Kinase,Receptor Kinase, beta-Adrenergic,Receptor Kinases, beta-Adrenergic,beta AR Kinase,beta Adrenergic Receptor Kinase,beta Adrenergic Receptor Kinases
D054732 Calcium-Calmodulin-Dependent Protein Kinase Type 2 A multifunctional calcium-calmodulin-dependent protein kinase subtype that occurs as an oligomeric protein comprised of twelve subunits. It differs from other enzyme subtypes in that it lacks a phosphorylatable activation domain that can respond to CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASE KINASE. Ca(2+)-Calmodulin Dependent Protein Kinase Type II,CaCMKII,CaM KII,CaM KIIalpha,CaM KIIbeta,CaM KIIdelta,CaM Kinase II,CaM Kinase II alpha,CaM Kinase II beta,CaM Kinase II delta,CaM Kinase II gamma,CaM PK II,CaM-Kinase II,CaM-Kinase IIalpha,CaMKII,CaMKIIgamma,Calcium-Calmodulin Dependent Protein Kinase II beta,Calcium-Calmodulin Dependent Protein Kinase II delta,Calcium-Calmodulin Dependent Protein Kinase II gamma,Calcium-Calmodulin Protein Kinase II,Calcium-Calmodulin-Dependent PK Type II,Calcium-Calmodulin-Dependent Protein Kinase Type 2 alpha Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 beta Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 delta Subunit,Calcium-Calmodulin-Dependent Protein Kinase Type 2 gamma Subunit,Calcium-Dependent CaM Kinase II,Calmodulin Kinase IIalpha,Calmodulin-Dependent Protein Kinase II,CaM Kinase IIalpha,Calcium Calmodulin Dependent PK Type II,Calcium Calmodulin Dependent Protein Kinase II beta,Calcium Calmodulin Dependent Protein Kinase II delta,Calcium Calmodulin Dependent Protein Kinase II gamma,Calcium Calmodulin Dependent Protein Kinase Type 2,Calcium Calmodulin Dependent Protein Kinase Type 2 alpha Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 beta Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 delta Subunit,Calcium Calmodulin Dependent Protein Kinase Type 2 gamma Subunit,Calcium Calmodulin Protein Kinase II,Calcium Dependent CaM Kinase II,Calmodulin Dependent Protein Kinase II
D054769 G-Protein-Coupled Receptor Kinase 2 A ubiquitously expressed G-protein-coupled receptor kinase subtype that has specificity for the agonist-occupied form of BETA-ADRENERGIC RECEPTORS. It may play an essential role in regulating myocardial contractile response. beta-Adrenergic Receptor Kinase 1,G Protein Coupled Receptor Kinase 2,beta Adrenergic Receptor Kinase 1

Related Publications

Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
August 2004, The Journal of biological chemistry,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
June 1996, Brain research,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
June 1993, European journal of pharmacology,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
December 2002, Behavioural pharmacology,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
May 1993, FEBS letters,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
January 1989, Psychopharmacology,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
January 2009, Pharmacological reports : PR,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
May 1993, Pharmacology, biochemistry, and behavior,
Christopher H So, and Vaneeta Verma, and Brian F O'Dowd, and Susan R George
December 1992, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!