The nematode neuropeptide, AF2 (KHEYLRF-NH2), increases voltage-activated calcium currents in Ascaris suum muscle. 2007

S Verma, and A P Robertson, and R J Martin
Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.

OBJECTIVE Resistance to all the classes of anti-nematodal drugs like the benzimidazoles, cholinergic agonists and avermectins, has now been recorded in parasites of animals and/or humans. The development of novel anthelmintics is an urgent and imperative need. Receptors of nematode neuropeptides have been suggested to be suitable target sites for novel anthelmintic drugs. METHODS To investigate the effect of AF2 on calcium-currents in Ascaris suum somatic muscle cells we employed the two-micropipette current-clamp and voltage-clamp techniques and a brief application of AF2. RESULTS Here we report the isolation of voltage-activated, transient, inward calcium currents. These currents are similar in characteristics to Caenorhabditis elegans UNC-2 type currents, non-L-type calcium currents. Following a 2-minute application of 1 microM AF2 , there was a significant long-lasting increase in the transient inward calcium current; AF2 increased the maximum current (from -84 nA to -158 nA) by shifting the threshold in the hyperpolarising direction (V (50) changed from -7.2 to -12.8 mV) and increasing the maximum conductance change from 1.91 to 2.94 microS. CONCLUSIONS These studies demonstrate a mechanism by which AF2 increased the excitability of the neuromuscular system by modulating calcium currents in nematodes. A selective small molecule agonist of the AF2 receptor is predicted to increase the contraction and act synergistically with cholinergic anthelmintics and could counter resistance to these compounds.

UI MeSH Term Description Entries
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D017165 Ascaris suum A species of parasitic nematode usually found in domestic pigs and a few other animals. Human infection can also occur, presumably as result of handling pig manure, and can lead to intestinal obstruction. Ascaris suums,suum, Ascaris
D032342 Muscle Cells Mature contractile cells, commonly known as myocytes, that form one of three kinds of muscle. The three types of muscle cells are skeletal (MUSCLE FIBERS, SKELETAL), cardiac (MYOCYTES, CARDIAC), and smooth (MYOCYTES, SMOOTH MUSCLE). They are derived from embryonic (precursor) muscle cells called MYOBLASTS. Muscle Cells, Mature,Myocytes,Mature Muscle Cell,Mature Muscle Cells,Muscle Cell,Muscle Cell, Mature,Myocyte

Related Publications

S Verma, and A P Robertson, and R J Martin
December 1992, The Journal of experimental biology,
S Verma, and A P Robertson, and R J Martin
January 1993, British journal of pharmacology,
S Verma, and A P Robertson, and R J Martin
August 1994, Biochemical Society transactions,
S Verma, and A P Robertson, and R J Martin
May 1995, Parasitology,
S Verma, and A P Robertson, and R J Martin
May 1989, Neuron,
S Verma, and A P Robertson, and R J Martin
July 1972, The Biochemical journal,
Copied contents to your clipboard!