Regeneration of lateral line and inner ear vestibular cells. 1991

J M Jørgensen
Department of Zoophysiology, University of Aarhus, Denmark.

Labelling experiments with [3H]thymidine demonstrate a continuous production of cells in the mechanoreceptive lateral line organs of the eel (Anguilla anguilla) and butterfly fish (Pantodon buchholzi) as well as in the electroreceptive ampullary organ of the transparent catfish (Kryptopterus bicirrhus). Shortly after [3H]thymidine injection many cells are labelled in the middle and basal parts of the sensory organ and after a few days' survival sensory cells are also labelled. The vestibular sensory organs of selected species of fishes, amphibians, reptiles and birds also show a continuous production of cells. In the budgerigar (Melopsittacus undulatus) labelled cells are found in the basal and middle layer of the sensory epithelium a few hours after injection with [3H]thymidine. A few days after the injection labelled cells are found in non-calyceal hair cells. After one month the calyceal cells are also labelled. Similar experiments with the bat Pipistrellus nathusii and with normal and gentamicin-treated mice (Mus musculus) show no labelled cells in the inner ear sensory epithelia. The lateral line organs and vestibular epithelia of non-mammalian vertebrates all contain a small number of dark cells with the characteristics of apoptotic cells. Macrophages and inclusions in some cells, thought to be remnants of apoptotic cells, are occasionally seen. Fixation at different osmolarities has little effect on the number of dark cells. It is suggested that the continually produced cells replace apoptotic dying cells.

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014722 Vestibule, Labyrinth An oval, bony chamber of the inner ear, part of the bony labyrinth. It is continuous with bony COCHLEA anteriorly, and SEMICIRCULAR CANALS posteriorly. The vestibule contains two communicating sacs (utricle and saccule) of the balancing apparatus. The oval window on its lateral wall is occupied by the base of the STAPES of the MIDDLE EAR. Vestibular Apparatus,Ear Vestibule,Vestibular Labyrinth,Vestibule of Ear,Vestibulum Auris,Apparatus, Vestibular,Ear Vestibules,Labyrinth Vestibule,Labyrinth Vestibules,Labyrinth, Vestibular,Labyrinths, Vestibular,Vestibular Labyrinths,Vestibule, Ear,Vestibules, Ear,Vestibules, Labyrinth
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell

Related Publications

J M Jørgensen
January 2016, Advances in experimental medicine and biology,
J M Jørgensen
December 1996, Development (Cambridge, England),
J M Jørgensen
April 2008, Developmental dynamics : an official publication of the American Association of Anatomists,
J M Jørgensen
September 2003, The Laryngoscope,
J M Jørgensen
January 1988, Brain, behavior and evolution,
J M Jørgensen
June 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J M Jørgensen
July 2009, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!