Regulation of neurogenesis and neuronal differentiation in primary and immortalized cells from mouse olfactory epithelium. 1991

A L Calof, and A D Lander, and D M Chikaraishi
Neuroscience Program, Tufts University School of Medicine, Boston, MA 02111.

We have developed an in vitro system for studying molecular events regulating neurogenesis in the mouse olfactory epithelium (OE). Our observations suggest that two types of neuronal precursor may be involved: (1) a transiently existing, immediate neuronal precursor (INP), which generates two postmitotic daughter neurons; and (2) a neuroepithelial stem cell, which may be the basal cell (or some subclass of basal cell) of the OE, and is presumed to be the progenitor of the INP. Using antibody markers that distinguish basal cells and postmitotic receptor neurons in vitro and in vivo, we have shown that neurogenesis occurs early on in OE cultures, but then ceases because INPs divide only once to generate postmitotic neurons and no new INPs are produced by basal cells. To determine whether the basal cell-to-INP transition, or proliferation and neuronal differentiation of the INP, are regulated by crucial growth factors or cellular interactions, we are testing various polypeptide growth factors and extracellular matrix proteins for their effects on OE neurogenesis in vitro. We have also generated immortalized OE cell lines by using retroviruses to transduce oncogenes into cultured OE cells. One such cell line (derived from a primary OE basal cell culture) develops branching processes when transplanted into neonatal mouse brain--a condition in which cells from freshly isolated OE can undergo apparent morphological differentiation into neurons.

UI MeSH Term Description Entries
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A L Calof, and A D Lander, and D M Chikaraishi
January 2006, Cellular and molecular neurobiology,
A L Calof, and A D Lander, and D M Chikaraishi
January 2010, Proceedings of the National Academy of Sciences of the United States of America,
A L Calof, and A D Lander, and D M Chikaraishi
January 2010, Journal of stem cells & regenerative medicine,
A L Calof, and A D Lander, and D M Chikaraishi
January 2000, Neuroscience,
A L Calof, and A D Lander, and D M Chikaraishi
April 1996, Journal of neuroscience research,
A L Calof, and A D Lander, and D M Chikaraishi
January 2008, Methods in molecular biology (Clifton, N.J.),
A L Calof, and A D Lander, and D M Chikaraishi
May 2022, Journal of photochemistry and photobiology. B, Biology,
A L Calof, and A D Lander, and D M Chikaraishi
December 2001, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
A L Calof, and A D Lander, and D M Chikaraishi
January 1994, Perspectives on developmental neurobiology,
Copied contents to your clipboard!