Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells. 2007

Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA. hdong5@utmem.edu

Granule and periglomerular cells in the main olfactory bulb express group I metabotropic glutamate receptors (mGluRs). The group I mGluR agonist 3,4-dihydroxyphenylglycine (DHPG) increases GABAergic spontaneous IPSCs (sIPSCs) in mitral cells, yet the presynaptic mechanism(s) involved and source(s) of the IPSCs are unknown. We investigated the actions of DHPG on sIPSCs and TTX-insensitive miniature IPSCs (mIPSCs) recorded in mitral and external tufted cells in rat olfactory bulb slices. DHPG, acting at mGluR1 and mGluR5, increased the rate but not amplitude of sIPSCs and mIPSCs in both cell types. The increase in mIPSCs depended on voltage-gated Ca2+ channels but persisted when ionotropic glutamate receptors and sodium spikes were blocked. Focal DHPG puffs onto granule cells or bath application after glomerular layer (GL) excision failed to increase mIPSCs in mitral cells. Additionally, GL excision reduced sIPSCs in mitral cells by 50%, suggesting that periglomerular cells exert strong tonic GABAergic inhibition of mitral cells. In contrast, GL DHPG puffs readily increased mIPSCs. These findings indicate that DHPG-evoked GABA release from granule cells requires spikes, whereas in the GL, DHPG facilitates periglomerular cell GABA release via both spike-dependent and spike-independent presynaptic mechanisms. We speculate that mGluRs amplify spike-driven lateral inhibition through the mitral-to-granule cell circuit, whereas GL mGluRs may play a more important role in amplifying intraglomerular inhibition after subthreshold input.

UI MeSH Term Description Entries
D008297 Male Males
D008734 Methoxyhydroxyphenylglycol Synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Hydroxymethoxyphenylglycol,MHPG,MOPEG,Vanylglycol,4-Hydroxy-3-methoxyphenylethylene Glycol,4-Hydroxy-3-methoxyphenylethyleneglycol,4-Hydroxy-3-methoxyphenylglycol,Methoxyhydroxyphenylglycol, (+)-Isomer,Methoxyhydroxyphenylglycol, (+-)-Isomer,Methoxyhydroxyphenylglycol, (-)-Isomer,4 Hydroxy 3 methoxyphenylethylene Glycol,4 Hydroxy 3 methoxyphenylethyleneglycol,4 Hydroxy 3 methoxyphenylglycol
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
May 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
January 2007, Journal of neurophysiology,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
January 2017, Frontiers in cellular neuroscience,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
April 2007, Journal of neurophysiology,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
September 1997, Journal of neurophysiology,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
April 2006, Journal of neurophysiology,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
November 2004, Journal of neurophysiology,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
October 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Hong-Wei Dong, and Abdallah Hayar, and Matthew Ennis
August 2009, Journal of neurophysiology,
Copied contents to your clipboard!