[Effects of marinobufagenin on electrophysiological and contractile characteristics of the rat diaphragm]. 2006

I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina

Effects of Na+,K(+)-ATPase inhibitor: marinobufagenin, on contractile and electric characteristics of isolated rat diaphragm were studied for the first time. Marinobufagenin induced dose-dependent (EC50 = 0.3 +/- 0.1 nM) increase in the contraction force (positive inotropic effect). At 1-2 nM, it slowed down the fatigue induced by continuous direct stimulation (2/s) of the muscle. Marinobufagenin at the same concentrations did not affect resting membrane potential or parameters of action potentials of muscle fibers, while at 10 and 20 nM it induced hyperpolarization by approximately 2 mV. Marinobufagenin blocked dose-dependently (IC50 = 2.9 +/- 2.0 nM) hyperpolarizing effect of acetylcholine (100 nM) mediated by increase in electrogenic contribution of alpha2 isoform of the Na+,K(+)-ATPase. This result suggests a capability of marinobufagenin to inhibit this isoform of the Na+,K(+)-ATPase. Possible mechanisms of marinobufagenin effects in skeletal muscle are discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D002018 Bufanolides Cyclopentanophenanthrenes with a 6-membered lactone ring attached at the 17-position and SUGARS attached at the 3-position. They are found in BUFONIDAE and often possess cardiotonic properties. Bufadienolides
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014662 Vasoconstrictor Agents Drugs used to cause constriction of the blood vessels. Vasoactive Agonist,Vasoactive Agonists,Vasoconstrictor,Vasoconstrictor Agent,Vasoconstrictor Drug,Vasopressor Agent,Vasopressor Agents,Vasoconstrictor Drugs,Vasoconstrictors,Agent, Vasoconstrictor,Agent, Vasopressor,Agents, Vasoconstrictor,Agents, Vasopressor,Agonist, Vasoactive,Agonists, Vasoactive,Drug, Vasoconstrictor,Drugs, Vasoconstrictor

Related Publications

I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
February 1982, Canadian journal of physiology and pharmacology,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
January 1995, Clinical and experimental pharmacology & physiology,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
October 1997, Journal of applied physiology (Bethesda, Md. : 1985),
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
September 2004, Journal of applied physiology (Bethesda, Md. : 1985),
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
October 1996, The European respiratory journal,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
August 2003, Clinical and experimental pharmacology & physiology,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
April 1989, Anesthesiology,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
January 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
June 1998, Journal of muscle research and cell motility,
I I Krivoĭ, and V V Kravtsova, and A V Prokof'ev, and E V Vashchinkina, and I V Kubasov, and T M Drabkina
March 1987, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!