Breast cancer resistance protein (Bcrp1/Abcg2) in mouse placenta and yolk sac: ontogeny and its regulation by progesterone. 2007

G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.

Breast Cancer Resistance Protein (BCRP), a recently-discovered transporter belonging to ABC superfamily, is highly expressed within the labyrinth of the placenta, the primary site of exchange between the maternal and fetal circulation. It has been proposed to function as an efflux pump protecting the fetus from a wide range of xenobiotics. It has also been recently shown that the yolk sac, in addition to the placenta, may be involved in transport of certain substances to and from the fetus. We hypothesised that there are changes in placental Bcrp1 (the mouse orthologue of human BCRP) expression during pregnancy and that these correlate with changes in progesterone production that occur in late gestation. We also hypothesised that Bcrp1 is expressed in the yolk sac, and that levels change with advancing gestation. Either whole concepti, or placenta and yolk sac, were collected from pregnant mice and analysed at embryonic (E) day 9.5, 12.5, 15.5 and 18.5 (term approximately E19.5). Peak expression of Bcrp1 mRNA was detected using in situ hybridisation within the placenta at E9.5 and the yolk sac at E12.5. There was a significant decrease thereafter in both tissues (p<0.001). In contrast, expression of Bcrp1 protein as assessed by immunohistochemistry and Western immunoblots did not change significantly during gestation either in the placenta nor the yolk sac, and no sex difference in Bcrp1 protein expression in either tissue was observed at E12.5. Daily progesterone treatment starting at E14.5 and continuing until E18.5 significantly increased maternal progesterone levels, but did not elicit any changes in the Bcrp1 mRNA or Bcrp1 protein expression either in the placenta or the yolk sac. Significant expression of Bcrp1 protein in fetal tissue was evident at the end of gestation, while expression in the fetal brain endothelium was evident as early as E12.5. We suggest that the placenta and the yolk sac, both of which express Bcrp1, may limit fetal exposure to the potentially adverse effects of xenobiotics including therapeutic drugs which the mother may be exposed to during pregnancy. The significant decrease in Bcrp1 mRNA expression in both the yolk sac and the placenta from mid to late gestation may be counter-balanced by an increase in Bcrp1 expression in fetal organs involved in absorption, excretion and protection.

UI MeSH Term Description Entries
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D005260 Female Females
D000070997 ATP Binding Cassette Transporter, Subfamily G, Member 2 ATP-binding cassette transporter, sub-family G protein that functions as a high capacity UREA exporter, transporter of STEROLS, and in the absorption and efflux of many drugs. Its efflux activity for ANTINEOPLASTIC AGENTS contributes to DRUG RESISTANCE. It functions as a homodimer and is expressed by cells in a variety of organs, as well as by NEOPLASTIC STEM CELLS. ABCG2 Protein,ABCG2 Transporter,ATP Binding Cassette Transporter, Sub-Family G, Member 2,CD338 Antigen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015017 Yolk Sac The first of four extra-embryonic membranes to form during EMBRYOGENESIS. In REPTILES and BIRDS, it arises from endoderm and mesoderm to incorporate the EGG YOLK into the DIGESTIVE TRACT for nourishing the embryo. In placental MAMMALS, its nutritional function is vestigial; however, it is the source of INTESTINAL MUCOSA; BLOOD CELLS; and GERM CELLS. It is sometimes called the vitelline sac, which should not be confused with the VITELLINE MEMBRANE of the egg. Vitelline Sac of Embryo,Embryo Vitelline Sac,Embryo Vitelline Sacs,Sac, Yolk,Sacs, Yolk,Yolk Sacs
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette

Related Publications

G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
December 2020, Reproductive toxicology (Elmsford, N.Y.),
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
July 2011, Reproductive sciences (Thousand Oaks, Calif.),
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
April 2011, Biology of reproduction,
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
January 1986, Placenta,
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
February 2012, Chinese journal of cancer,
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
June 2007, American journal of physiology. Cell physiology,
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
April 2010, Journal of agricultural and food chemistry,
G M Kalabis, and S Petropoulos, and W Gibb, and S G Matthews
April 2005, The international journal of biochemistry & cell biology,
Copied contents to your clipboard!