Differential repression of c-myc and cdc2 gene expression by ERF and PE-1/METS. 2007

Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
Biomedical Sciences Graduate Program, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.

The molecular mechanisms that control the proliferation and differentiation of specific cell types remain poorly understood. Positive ETS factors play important roles in mediating proliferative responses to Ras/MAPK signaling in many cell types following mitogenic stimulation. PE-1/METS, a member of the ETS-domain family transcription factors that functions as a transcriptional repressor, can block mitogenic responses mediated by positively acting Ets factors. The anti-proliferative functions of PE-1/METS require its interaction with DP103, a multifunctional DEAD-box protein that mediates interactions with corepressor proteins and acts in a cooperative manner with Rb family members and to repress cell cycle control genes. ETS-2 repressor factor (ERF) is structurally related to and also functions as a transcriptional repressor, but endogenous target genes and mechanisms of repression remain unknown. Here, we demonstrate that like PE-1/METS, ERF-mediated repression also requires DP103, and that ERF negatively regulates the c-myc and cdc2 genes. In contrast to PE-1/METS, however, ERF-mediated repression of these genes is inactivated by MAPK signaling through phosphorylation sites that are ERF-specific. Furthermore, constitutive activation of the Ras/MAPK pathway in RAW 264.7 cells transformed by the v-Abelson leukemia virus is associated with constitutive inactivation of ERF in this cell type. We propose that ERF and PE-1/METS function to impose 'repression checkpoints' on a subset of cell cycle control genes that are differentially regulated by growth factor signaling pathways that control proliferation and differentiation and that ERF is targeted for inactivation by transforming oncogenes such as vAbl.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
June 1987, Genes & development,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
October 2007, The Journal of biological chemistry,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
August 2004, FEBS letters,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
December 1997, Carcinogenesis,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
July 2000, The Journal of biological chemistry,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
May 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
April 2001, Nature cell biology,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
July 2014, Nature,
Kelly D Hester, and Dominique Verhelle, and Laure Escoubet-Lozach, and Rosa Luna, and David W Rose, and Christopher K Glass
May 2003, Journal of molecular biology,
Copied contents to your clipboard!