Structure and chemical organization of the accessory olfactory bulb in the goat. 2007

Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba, Japan.

The structure and chemical composition of the accessory olfactory bulb (AOB) were examined in male and female goats. Sections were subjected to either Nissl staining, Klüver-Barrera staining, lectin histochemistry, or immunohistochemistry for nitric oxide synthase (NOS), neuropeptide Y (NPY), tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH), and glutamic acid decarboxylase (GAD). The goat AOB was divided into four layers: the vomeronasal nerve layer (VNL), glomerular layer (GL), mitral/tufted (M/T) cell layer (MTL), and granule cell layer (GRL). Quantitative and morphometric analyses indicated that a single AOB contained 5,000-8,000 putative M/T cells with no sex differences, whereas the AOB was slightly larger in males. Of the 21 lectins examined, 7 specifically bound to the VNL and GL, and 1 bound not only to the VNL, but also to the MTL and GRL. In either of these cases, no heterogeneity of lectin staining was observed in the rostrocaudal direction. NOS-, TH-, DBH-, and GAD-immunoreactivity (ir) were observed in the MTL and GRL, whereas NPY-ir was present only in the GRL. In the GL, periglomerular cells with GAD-ir were found in abundance, and a subset of periglomerular cells containing TH-ir was also found. Double-labeling immunohistochemistry revealed that virtually all periglomerular cells containing TH-ir were colocalized with GAD-ir.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D005260 Female Females
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
January 1999, Journal of neurophysiology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
December 1998, Microscopy research and technique,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
July 2014, Nature neuroscience,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
September 2006, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
April 1963, The Journal of comparative neurology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
May 1975, The Journal of comparative neurology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
October 1989, Journal of morphology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
January 1985, Folia morphologica,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
October 1989, Journal of morphology,
Kazutaka Mogi, and Katsuyasu Sakurai, and Toru Ichimaru, and Satoshi Ohkura, and Yuji Mori, and Hiroaki Okamura
January 2021, Cell and tissue research,
Copied contents to your clipboard!