Muscarinic potassium channels augment dynamic and static heart rate responses to vagal stimulation. 2007

Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
Department of Cardiovascular Dynamics, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan. m-mizuno@ri.ncvc.go.jp

Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001514 Bee Venoms Toxins obtained from Apis mellifera (honey bee) and related species. They contain various enzymes, polypeptide toxins, and other substances, some of which are allergenic or immunogenic or both. These venoms were formerly used in rheumatism to stimulate the pituitary-adrenal system. Apis Venoms,Honeybee Venom,Honeybee Venoms,Apitoxin,Bee Venom,Venom, Bee,Venom, Honeybee,Venoms, Apis,Venoms, Bee,Venoms, Honeybee
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus
D024661 Potassium Channels, Inwardly Rectifying Potassium channels where the flow of K+ ions into the cell is greater than the outward flow. Inward Rectifier Potassium Channels,IRK1 Channel,Inward Rectifier K+ Channel,Inward Rectifier K+ Channels,Inward Rectifier Potassium Channel,Inwardly Rectifying Potassium Channel,Inwardly Rectifying Potassium Channels,K+ Channels, Inwardly Rectifying,Potassium Channel, Inwardly Rectifying,Channel, IRK1
D026902 Potassium Channel Blockers A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS. Channel Blockers, Potassium,Potassium Channel Blocker,Blocker, Potassium Channel,Blockers, Potassium Channel,Channel Blocker, Potassium

Related Publications

Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
August 1998, The American journal of physiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
June 2003, American journal of physiology. Heart and circulatory physiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
September 1992, Journal of the autonomic nervous system,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
December 2021, Physiological reports,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
September 2019, American journal of physiology. Heart and circulatory physiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
November 2000, Journal of molecular and cellular cardiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
January 2013, Revista do Instituto de Medicina Tropical de Sao Paulo,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
August 2007, American journal of physiology. Heart and circulatory physiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
November 1995, The Journal of physiology,
Masaki Mizuno, and Atsunori Kamiya, and Toru Kawada, and Tadayoshi Miyamoto, and Shuji Shimizu, and Masaru Sugimachi
January 1996, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Copied contents to your clipboard!