Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. 2007

Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
Department of Chemistry and Biochemistry, 620 Parrington Oval, Norman, OK 73019, USA.

In gram-negative bacteria, transporters belonging to the resistance-nodulation-cell division (RND) superfamily of proteins are responsible for intrinsic multidrug resistance. Haemophilus influenzae, a gram-negative pathogen causing respiratory diseases in humans and animals, constitutively produces the multidrug efflux transporter AcrB (AcrB(HI)). Similar to other RND transporters AcrB(HI) associates with AcrA(HI), the periplasmic membrane fusion protein, and the outer membrane channel TolC(HI). Here, we report that AcrAB(HI) confers multidrug resistance when expressed in Escherichia coli and requires for its activity the E. coli TolC (TolC(EC)) protein. To investigate the intracellular dynamics of AcrAB(HI), single cysteine mutations were constructed in AcrB(HI) in positions previously identified as important for substrate recognition. The accessibility of these strategically positioned cysteines to the hydrophilic thiol-reactive fluorophore fluorescein-5-maleimide (FM) was studied in vivo in the presence of various substrates of AcrAB(HI) and in the presence or absence of AcrA(HI) and TolC(EC). We report that the reactivity of specific cysteines with FM is affected by the presence of some but not all substrates. Our results suggest that substrates induce conformational changes in AcrB(HI).

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D006193 Haemophilus influenzae A species of HAEMOPHILUS found on the mucous membranes of humans and a variety of animals. The species is further divided into biotypes I through VIII. Bacterium influenzae,Coccobacillus pfeifferi,Haemophilus meningitidis,Hemophilus influenzae,Influenza-bacillus,Mycobacterium influenzae
D001425 Bacterial Outer Membrane Proteins Proteins isolated from the outer membrane of Gram-negative bacteria. OMP Proteins,Outer Membrane Proteins, Bacterial,Outer Membrane Lipoproteins, Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D019943 Amino Acid Substitution The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid
D020125 Mutation, Missense A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed) Missense Mutation,Missense Mutations,Mutations, Missense

Related Publications

Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
September 2017, Molecular bioSystems,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
January 2019, Communications biology,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
November 2017, Antimicrobial agents and chemotherapy,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
August 2008, Current opinion in structural biology,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
January 2015, Frontiers in microbiology,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
October 2002, Nature,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
January 2003, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
January 2002, Journal of biochemistry,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
June 2021, Nature communications,
Vishakha Dastidar, and Weimin Mao, and Olga Lomovskaya, and Helen I Zgurskaya
September 2008, Current drug targets,
Copied contents to your clipboard!