Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria. 2007

Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland.

Gifsy-1 and Gifsy-2 are lambdoid prophages which contribute to the virulence of Salmonella enterica serovar Typhimurium. The nucleotide sequence of the replication region of both prophages is identical, and similar in organization to the replication region of bacteriophage lambda. To investigate the replication of the Gifsy phages and the relationship between Gifsy and host chromosome replication, a plasmid which contained all the genes and regulatory sequences required for autonomous replication in bacterial cells was constructed. This plasmid, pGifsy, was stably maintained in Escherichia coli cells. The helicase loader of the Gifsy phages is very similar to the DnaC protein of the host, a feature characteristic of a large group of prophages common in the sequenced genomes of pathogenic enterobacteria. This DnaC-like protein showed no similarity to the helicase loader of bacteriophage lambda and closely related phages. Interestingly, unlike plasmids derived from bacteriophage lambda (lambda plasmids), pGifsy did not require a gene encoding the putative helicase loader for replication, although deletion of this gene resulted in a decrease in plasmid copy number. Under these conditions, it was shown that the plasmid utilized the helicase loader coded by the host. On the other hand, the viral protein could not substitute for DnaC in bacterial chromosome replication. The results of the current study support the hypothesis that the enterobacterial helicase loader is of viral origin. This hypothesis explains why the gene for DnaC, the protein central to both replication initiation and replication restart in E. coli, is present in the genomes of Escherichia, Shigella, Salmonella and Buchnera, but not in the genomes of related enterobacteria.

UI MeSH Term Description Entries
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage

Related Publications

Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
January 2014, PloS one,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
March 2002, International journal of medical microbiology : IJMM,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
September 2006, Infection and immunity,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
October 2002, Journal of bacteriology,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
January 2001, Journal of bacteriology,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
April 2012, RNA biology,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
July 2015, Infection and immunity,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
December 2001, Infection and immunity,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
August 2023, Microbiology spectrum,
Bartosz Słomiński, and Joanna Całkiewicz, and Piotr Golec, and Grzegorz Węgrzyn, and Borys Wróbel
January 2012, PloS one,
Copied contents to your clipboard!