Effects of dietary pH and phosphorus source on performance, gastrointestinal tract digesta, and bone measurements of weanling pigs. 1991

M L Straw, and E T Kornegay, and J L Evans, and C M Wood
Dept. of Anim. Sci., Virginia Polytechnic Institute and State University, Blacksburg 24061.

Crossbred pigs (n = 144, average age and weight = 28 +/- 3 d, 7.5 kg) were used in two 6-wk trials to assess the effects of dietary pH and P source on growth performance, gastrointestinal digesta pH and chloride ion concentration (Cl-), and bone characteristics. Treatments were randomly allotted within blocks (based on weight within gender) to a 3 x 2 factorial arrangement with three dietary pH levels (5.4, 6.0, and 6.7) and two P sources: dicalcium phosphate (DCP) and defluorinated phosphate (DFP). Pigs fed the pH 6.7 diet had reduced ADG (P less than .01) and average daily feed intakes (ADFI; P less than .001) during wk 1 to 3 and overall compared with pigs fed the pH 6.0 diet, but ADG and ADFI were not affected when the pH 5.4 diet was fed. There was a dietary pH x P source interaction (P less than .05) for ADFI. Pigs had decreased ADFI as dietary pH was increased from 6.0 to 6.7 for both DCP and DFP, but ADFI was similar for the pH 6.0 and 5.4 diets with DFP, whereas ADFI was greater for the pH 5.4 diet with DCP. Dietary pH did not influence ADFI:ADG ratio (F:G; P greater than .05), and P source had no effect (P greater than .05) on either ADG, ADFI, or F:G.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005260 Female Females
D005745 Gastric Acidity Determination Gastric analysis for determination of free acid or total acid. Acidity Determination, Gastric,Acidity Determinations, Gastric,Determination, Gastric Acidity,Determinations, Gastric Acidity,Gastric Acidity Determinations
D005766 Gastrointestinal Contents The contents included in all or any segment of the GASTROINTESTINAL TRACT. Digestive Tract Contents,Intestinal Contents,Stomach Contents,GI Contents,Digestive Tract Content,GI Content,Gastrointestinal Content,Intestinal Content,Stomach Content
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M L Straw, and E T Kornegay, and J L Evans, and C M Wood
October 1996, Journal of animal science,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
February 2001, Journal of animal science,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
September 2003, Journal of animal science,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
November 1989, Journal of animal science,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
February 1991, Journal of animal science,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
August 1989, The Journal of nutrition,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
April 2014, Asian-Australasian journal of animal sciences,
M L Straw, and E T Kornegay, and J L Evans, and C M Wood
December 1980, Journal of animal science,
Copied contents to your clipboard!