Reevaluation of the roles of luteinizing hormone and follicle-stimulating hormone in the ovulatory process. 1991

S C Chappel, and C Howles
Ares-Serono Inc., Boston, MA 02109.

Circulating levels of luteinizing hormone (LH) are essential for the production of steroid hormones that regulate the timing of ovulation and target tissue responses, as well as maintenance of the corpus luteum and therefore early pregnancy. Clinical and basic science observations show that elevated levels of serum LH during the follicular phase of the menstrual cycle are not only unnecessary for follicular maturation but are deleterious to normal reproductive processes. These elevations may occur as a result of administration of exogenous LH or through an endogenous pathological process (i.e. polycystic ovarian disease, PCOD). Resting levels of LH, synergizing with locally produced IGFs, inhibin and perhaps other growth factors, are adequate for normal follicular growth and steroidogenesis. Elevations in serum LH above these resting levels may result in increased androgen production that diminishes follicular function and reduces early embryo viability. Elevated LH levels during the preovulatory period may also negatively influence post-ovulatory events such as conception and implantation. With these facts in mind, the best results for ovulation induction would be expected with purified follicle-stimulating hormone (FSH) administration to women following gonadotrophin releasing hormone (GnRH) down-regulation. It is hoped that this review provides the reader with an analysis of the complex series of events that regulate normal follicular maturation. The reevaluation of the two cell-two gonadotrophin theory suggests that during the preovulatory period, resting levels of LH are adequate for normal follicular maturation. Indeed, overstimulation of the ovary with excessive amounts of LH may diminish the ability of that target organ to produce fertile ova.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010060 Ovulation The discharge of an OVUM from a rupturing follicle in the OVARY. Ovulations
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S C Chappel, and C Howles
November 1996, Human reproduction (Oxford, England),
S C Chappel, and C Howles
February 1994, Human reproduction (Oxford, England),
S C Chappel, and C Howles
October 1968, Proceedings of the National Academy of Sciences of the United States of America,
S C Chappel, and C Howles
January 1969, Vitamins and hormones,
S C Chappel, and C Howles
September 1972, The Journal of endocrinology,
Copied contents to your clipboard!