Alveolar epithelium and Na,K-ATPase in acute lung injury. 2007

István Vadász, and Stacy Raviv, and Jacob I Sznajder
Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA.

Active transport of sodium across the alveolar epithelium, undertaken in part by the Na,K-adenosine triphosphatase (Na,K-ATPase), is critical for clearance of pulmonary edema fluid and thus the outcome of patients with acute lung injury. Acute lung injury results in disruption of the alveolar epithelial barrier and leads to impaired clearance of edema fluid and altered Na,K-ATPase function. There has been significant progress in the understanding of mechanisms regulating alveolar edema clearance and signaling pathways modulating Na,K-ATPase function during lung injury. The accompanying review by Morty et al. focuses on intact organ and animal models as well as clinical studies assessing alveolar fluid reabsorption in alveolar epithelial injury. Elucidation of the mechanisms underlying regulation of active Na+ transport, as well as the pathways by which the Na,K-ATPase regulates epithelial barrier function and edema clearance, are of significance to identify interventional targets to improve outcomes of patients with acute lung injury.

UI MeSH Term Description Entries
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011654 Pulmonary Edema Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening. Wet Lung,Edema, Pulmonary,Edemas, Pulmonary,Pulmonary Edemas,Lung, Wet,Lungs, Wet,Wet Lungs
D012128 Respiratory Distress Syndrome A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA. ARDS, Human,Acute Respiratory Distress Syndrome,Adult Respiratory Distress Syndrome,Pediatric Respiratory Distress Syndrome,Respiratory Distress Syndrome, Acute,Respiratory Distress Syndrome, Adult,Respiratory Distress Syndrome, Pediatric,Shock Lung,Distress Syndrome, Respiratory,Distress Syndromes, Respiratory,Human ARDS,Lung, Shock,Respiratory Distress Syndromes,Syndrome, Respiratory Distress
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015633 Extravascular Lung Water Water content outside of the lung vasculature. About 80% of a normal lung is made up of water, including intracellular, interstitial, and blood water. Failure to maintain the normal homeostatic fluid exchange between the vascular space and the interstitium of the lungs can result in PULMONARY EDEMA and flooding of the alveolar space. Lung Water, Extravascular,Extra Vascular Lung Water,Lung Water, Extra Vascular,Water, Extravascular Lung

Related Publications

István Vadász, and Stacy Raviv, and Jacob I Sznajder
December 2007, Journal of bioenergetics and biomembranes,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
December 1997, The American journal of physiology,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
January 2016, Respiratory physiology & neurobiology,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
January 2005, Proceedings of the American Thoracic Society,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
November 2000, Current eye research,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
October 1991, The American journal of physiology,
István Vadász, and Stacy Raviv, and Jacob I Sznajder
February 2010, Proceedings of the American Thoracic Society,
Copied contents to your clipboard!