Engineered ectopic expression of the psbA gene encoding the photosystem II D1 protein in Synechocystis sp. PCC6803. 2007

Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA.

A genetic vector-recipient system was developed to engineer expression of the wild-type psbA2 gene encoding the photosystem II (PSII) D1 protein only from a non-native location (ectopic) in the Synechocystis sp. PCC6803 and the result was a new strain, designated MK1. While MK1 accumulates near normal levels of PSII under low light conditions, it is very sensitive to photoinhibition. This phenotype can be traced to impaired PSII repair capacity. Based upon the hypothesis that the non-native transcriptional activity of the re-introduced psbA gene was insufficient to sustain the translation rate necessary for normal PSII repair rates, we conducted a quantitative analysis of the relationship between psbA transcript abundance on the rate of recovery from photoinhibition. Analysis of MK1 and two other engineered strains, with intermediate levels of psbA mRNA, indicated that transcript levels are indeed limiting the engineered strains. Furthermore, transcript levels may become limiting even in the wild-type, but only under very high light conditions when the demands for D1 replacement synthesis are maximal. The work extends the original studies of Komenda and colleagues (Komenda et al. (2000) Plant Mol Biol 42(4):635-645) and sets the stage for alternative approaches to engineering non-native expression of the D1 protein.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D045332 Photosystem II Protein Complex A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN. Chloroplast Reaction Center Protein D1,D1 Photosystem II Protein, Plant,Light-Induced D1 Protein, Photosystem II,Oxygen Evolving Enzyme,PRCP II D2 Protein,Photosystem II,Photosystem II Reaction Center,Photosystem II Reaction Center Complex D1 Protein,Photosystem II Reaction Center Complex D2 Protein,RCII-D1 Protein,Water Oxidase,Water-Splitting Enzyme of Photosynthesis,Enzyme, Oxygen Evolving,Evolving Enzyme, Oxygen,Light Induced D1 Protein, Photosystem II,Oxidase, Water,Photosynthesis Water-Splitting Enzyme,Water Splitting Enzyme of Photosynthesis
D046939 Synechocystis A form-genus of unicellular CYANOBACTERIA in the order Chroococcales. None of the strains fix NITROGEN, there are no gas vacuoles, and sheath layers are never produced.

Related Publications

Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
February 1999, Journal of photochemistry and photobiology. B, Biology,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
February 1989, Nucleic acids research,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
July 1998, The Journal of biological chemistry,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
January 2009, The Journal of biological chemistry,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
November 2000, Biochimica et biophysica acta,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
January 2017, Molekuliarnaia biologiia,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
July 1994, FEBS letters,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
May 2010, PloS one,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
September 1991, Agricultural and biological chemistry,
Madhavi Kommalapati, and Hong Jin Hwang, and Hong-Liang Wang, and Robert L Burnap
January 2011, Journal of photochemistry and photobiology. B, Biology,
Copied contents to your clipboard!