Reduced expression of decay-accelerating factor 1 on CD4+ T cells in murine systemic autoimmune disease. 2007

David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
W. M. Keck Autoimmune Disease Center, The Scripps Research Institute, La Jolla, California, USA.

OBJECTIVE Deficiency of decay-accelerating factor 1 (termed Daf1 in mice) has been shown to exacerbate autoimmunity, and recent studies have suggested that this may be explained by Daf1 acting as a regulator of T cell immunity. The aim of this study was to determine whether Daf1 expression on T cells is modulated during development of autoimmunity in mice. METHODS To test this hypothesis, we examined Daf1 levels in NZB, DBA/2, and B10.S mice before and after induction of murine mercury-induced autoimmunity (mHgIA). Daf1 was measured by real-time polymerase chain reaction and flow cytometry, and levels of Daf1 were correlated with markers of lymphocyte activation and cytokine production. RESULTS Autoimmune-prone NZB mice had low endogenous levels of Daf1 irrespective of the induction of mHgIA. Induction of autoimmunity reduced Daf1 expression in mHgIA-sensitive B10.S mice, particularly on activated/memory (CD44(high)) CD4+ T cells that accumulate as a result of exposure to mercury. Murine mercury-induced autoimmunity-resistant DBA/2 mice, which fail to accumulate CD44(high) T cells, showed no change in Daf1 expression. Modulation of Daf1 expression was found to require CD4+ T cell costimulation, since B10.S mice deficient in CD28 were unable to down-regulate Daf1 or accumulate activated/memory CD4+ T cells. In B10.S mice exposed to mercury, the production of interleukin-4 (IL-4), but not that of IL-2 or interferon-gamma, in the spleen was associated with CD44(high),Daf1(low),CD4+ T cells. CONCLUSIONS These findings demonstrate that reduction of Daf1 expression is closely associated with CD4+ T cell activation and the accumulation of CD44(high)(activated/memory),CD4+ T cells in both spontaneous and induced systemic autoimmune disease.

UI MeSH Term Description Entries
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008814 Mice, Inbred NZB An inbred strain of mouse that is widely used as a model for AUTOIMMUNE DISEASES such as SYSTEMIC LUPUS ERYTHEMATOSUS. Mice, NZB,Mouse, Inbred NZB,Mouse, NZB,Inbred NZB Mice,Inbred NZB Mouse,NZB Mice,NZB Mice, Inbred,NZB Mouse,NZB Mouse, Inbred
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001327 Autoimmune Diseases Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides. Autoimmune Disease,Disease, Autoimmune,Diseases, Autoimmune
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte

Related Publications

David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
March 1991, Clinical and experimental immunology,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
April 2007, The American journal of pathology,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
October 2012, Muscle & nerve,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
December 1994, Immunology and cell biology,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
March 1996, International immunology,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
October 2022, EMBO molecular medicine,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
October 2008, Journal of immunology (Baltimore, Md. : 1950),
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
December 1991, Journal of immunology (Baltimore, Md. : 1950),
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
September 2002, The American journal of pathology,
David M Cauvi, and Gabrielle Cauvi, and K Michael Pollard
July 2018, Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences,
Copied contents to your clipboard!