Dependence of cell survival on DNA repair in human mononuclear phagocytes. 1991

C Terai, and D B Wasson, and C J Carrera, and D A Carson
Department of Medicine, University of California, San Diego, La Jolla 92093-0945.

Mononuclear phagocytes play a central role in the pathogenesis of chronic inflammatory diseases. It is therefore important to define chemotherapeutically exploitable metabolic pathways that distinguish monocytes from other cell types. Blood monocytes do not synthesize deoxynucleotides de novo, and their transformation to macrophages occurs without cell division. Whether or not monocytes can repair DNA damage, and whether or not DNA repair is necessary for their survival, is unknown. The present experiments demonstrate that normal human monocytes, unlike neutrophils, rapidly repair DNA strand breaks induced by gamma-irradiation. Monocyte extracts contain functional immunoreactive DNA polymerase-alpha. DNA repair synthesis in normal monocytes is blocked by aphidicolin, an inhibitor of DNA polymerase-alpha with respect to dCTP. Aphidicolin is also directly toxic to normal monocytes, but has no effect on nondividing lymphocytes or fibroblasts. Compared to most other cell types, monocytes and macrophages have very low dCTP pools, but abundant deoxycytidine kinase activity. This suggests that dCTP derived from salvage pathways is important for DNA repair in these cells. Consistent with this notion, exogenous deoxycytidine could partially protect monocytes from aphidicolin killing. The unexpected toxicity of aphidicolin toward normal human monocytes may be attributable to their high rate of spontaneous DNA strand break formation, to the importance of DNA polymerase-alpha for DNA repair in these cells, and to their minute dCTP pools.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D015762 2-Chloroadenosine 2-Chloroadenosine. A metabolically stable analog of adenosine which acts as an adenosine receptor agonist. The compound has a potent effect on the peripheral and central nervous system. 2 Chloroadenosine
D016590 Aphidicolin An antiviral antibiotic produced by Cephalosporium aphidicola and other fungi. It inhibits the growth of eukaryotic cells and certain animal viruses by selectively inhibiting the cellular replication of DNA polymerase II or the viral-induced DNA polymerases. The drug may be useful for controlling excessive cell proliferation in patients with cancer, psoriasis or other dermatitis with little or no adverse effect upon non-multiplying cells. Aphidicolin, (3-S-(3alpha,4beta,4abeta,6aalpha,8alpha,9alpha,11aalpha,11balpha))-Isomer,ICI-69653,NSC-234714,NSC-351140,ICI 69653,ICI69653,NSC 234714,NSC 351140,NSC234714,NSC351140

Related Publications

C Terai, and D B Wasson, and C J Carrera, and D A Carson
April 1988, Seminars in hematology,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
October 1977, Acta pathologica et microbiologica Scandinavica. Section C, Immunology,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
August 1979, Blood,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
January 1982, Advances in experimental medicine and biology,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
January 1980, Placenta,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
January 2005, Methods in molecular medicine,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
January 1996, Methods in molecular medicine,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
August 1984, Parasitology,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
February 1991, The Journal of rheumatology. Supplement,
C Terai, and D B Wasson, and C J Carrera, and D A Carson
March 1989, BMJ (Clinical research ed.),
Copied contents to your clipboard!