Electrophysiological study of spinothalamic inputs to ventrolateral and adjacent thalamic nuclei of the cat. 1991

C T Yen, and C N Honda, and E G Jones
Department of Anatomy and Neurobiology, University of California, Irvine 92717.

1. Extracellular and intracellular methods were used to record from fibers and neurons in the ventral lateral (VL) and adjacent nuclei of the cat thalamus. The receptive fields of the recorded units were analyzed and the units tested for inputs from the medial lemniscus (ML) and spinothalamic tract (STT) by electrical stimulation of the dorsal columns (DC) and ventrolateral funiculus (VLF) at the C2-3 spinal level. 2. Thirty-eight STT fibers were isolated in the thalamus. Their conduction velocities ranged from 15 to 75 m/s (mode 36 m/s). Adequate stimuli were found for 23 of these fibers. Seventeen were low-threshold (LT), 3 were wide-dynamic-range (WDR), and 3 were high-threshold (HT) units. 3. Five STT fibers were intra-axonally injected. Three were sufficiently well filled for analysis of their terminal fields. An intermediate-velocity STT fiber (conduction velocity 38 m/s) had a 4.3-microns axon and a single large terminal field in the central lateral nucleus (CL). The other two STT fibers were smaller, with diameters of 2.5 and 2.3 microns, conduction velocities of 15 and 19 m/s, and terminal fields made up of a few small boutons at the borders of the ventral posterior lateral nucleus (VPL). 4. Of 319 neurons isolated, 14 out of 129 (10.8%) in VL, 14 out of 76 (18.4%) in the VPL or ventral posterior medial (VPM) nucleus, 27 out of 64 (42.2%) in the CL nucleus, and 5 out of 50 (10%) in the reticular nucleus (R) responded at latencies less than 50 ms to VLF stimuli. A train of three pulses was more effective in driving VLF-responding neurons in all these nuclei than a single pulse. VLF-responding cells were widely dispersed in VL, concentrated in a focus in CL, and distributed around the borders of VPL. Most of those in VL and a small number in CL could be antidromically activated by stimulation of motor cortex. 5. Latencies of presynaptic responses (STT fibers) to VLF stimulation were short and varied from 0.8 to 3.9 ms (mode 1.6 ms). Despite this, very few fast-responding neurons were found. These were six VPL neurons (2.5 to 4 ms), one VL neuron (3 ms), and four CL neurons (3-4 ms). The initial spike latencies of the majority of thalamic neurons responding to VLF stimulation appeared in two peaks, one between 6 and 8 ms and the other at 10-15 ms.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C T Yen, and C N Honda, and E G Jones
November 1978, Brain research,
C T Yen, and C N Honda, and E G Jones
February 2003, Brain research,
C T Yen, and C N Honda, and E G Jones
January 1987, Experimental brain research,
C T Yen, and C N Honda, and E G Jones
January 1966, Confinia neurologica,
C T Yen, and C N Honda, and E G Jones
January 1965, Neurocirugia,
C T Yen, and C N Honda, and E G Jones
January 1980, Brain research,
C T Yen, and C N Honda, and E G Jones
June 1989, Journal of neurophysiology,
Copied contents to your clipboard!