Influence of map scale on primary afferent terminal field geometry in cat dorsal horn. 1991

R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
Department of Physiology, West Virginia University Health Sciences Center, Morgantown 26506.

1. Thirty-one physiologically identified primary afferent fibers were labeled intracellularly with horseradish peroxidase (HRP). 2. A computer analysis was used to determine whether the distribution of cutaneous mechanoreceptive afferent terminals varies as a function of location within the dorsal horn somatotopic map. 3. An analysis of the geometry of the projections of these afferents has shown that 1) terminal arbors have a greater mediolateral width within the region of the foot representation than lateral to it, 2) terminal arbors have larger length-to-width ratios outside the foot representation than within it, and 3) the orientation of terminal arbors near the boundary of the foot representation reflects the angle of the boundary. Previous attribution of mediolateral width variations to primary afferent type are probably in error, although there appear to be genuine variations of longitudinal extent as a function of primary afferent type. 4. Nonuniform terminal distributions represent the first of a three-component process underlying assembly of the monosynaptic portions of cell receptive fields (RFs) and the somatotopic map. The other two components consist of the elaboration of cell dendritic trees and the establishment of selective connections. 5. The variation of primary afferent terminal distributions with map location is not an absolute requirement for development of the map; for example, the RFs of postsynaptic cells could be assembled with the use of a uniform terminal distribution for all afferents, everywhere in the map, as long as cell dendrites penetrate the appropriate portions of the presynaptic neuropil and receive connections only from afferent axons contributing to their RFs.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
September 2003, Pain,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
October 1981, Neuroscience letters,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
January 1987, Nature,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
October 1996, The Journal of comparative neurology,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
August 1997, Journal of neurophysiology,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
January 1985, Experimental brain research,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
June 1968, Brain research,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
June 1997, Brain research. Brain research reviews,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
February 1996, Progress in neurobiology,
R J Millecchia, and L M Pubols, and R V Sonty, and J L Culberson, and W E Gladfelter, and P B Brown
August 1994, The Journal of comparative neurology,
Copied contents to your clipboard!