Dose modification factors for 192Ir high-dose-rate irradiation using Monte Carlo simulation. 2006

Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
Radiation Oncology Department, Greater Baltimore Medical Center, Baltimore, Maryland 21204, USA. bkassas@gbmc.org

A recently introduced brachytherapy system for partial breast irradiation, MammoSite, consists of a balloon applicator filled with contrast solution and a catheter for insertion of an 192Ir high-dose-rate (HDR) source. In using this system, the treatment dose is typically prescribed to be delivered 1 cm from the balloon's surface. Most treatment-planning systems currently in use for brachytherapy procedures use water-based dosimetry with no correction for heterogeneity. Therefore, these systems assume that full scatter exists regardless of the amount of tissue beyond the prescription line. This assumption might not be a reasonable one, especially when the tissue beyond the prescription line is thin. In such a case, the resulting limited scatter could cause an underdose to be delivered along the prescription line. We used Monte Carlo simulations to investigate how the thickness of the tissue between the surface of the balloon and the skin or lung affected the treatment dose delivery. Calculations were based on a spherical water phantom with a diameter of 30 cm and balloons with diameters of 4 cm, 5 cm, and 6 cm. The dose modification factor is defined as the ratio of the dose rate at the typical prescription distance of 1 cm from the balloon's surface with full scatter obtained using the water phantom to the dose rate with a finite tissue thickness (from 0 cm to 10 cm) beyond the prescription line. The dose modification factor was found to be dependent on the balloon diameter and was 1.098 for the 4-cm balloon and 1.132 for the 6-cm balloon with no tissue beyond the prescription distance at the breast-skin interface. The dose modification factor at the breast-lung interface was 1.067 for the 4-cm balloon and 1.096 for the 6-cm balloon. Even 5 cm of tissue beyond the prescription distance could not result in full scatter. Thus, we found that considering the effect of diminished scatter is important to accurate dosimetry. Not accounting for the dose modification factor may result in delivering a lower dose than is prescribed.

UI MeSH Term Description Entries
D007496 Iridium Radioisotopes Unstable isotopes of iridium that decay or disintegrate emitting radiation. Ir atoms with atomic weights 182-190, 192, and 194-198 are radioactive iridium isotopes. Radioisotopes, Iridium
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
March 2001, Physics in medicine and biology,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
April 1998, Medical physics,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
November 2000, Medical physics,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
August 2019, Zeitschrift fur medizinische Physik,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
October 1998, Medical physics,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
August 1997, Medical physics,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
December 1995, Physics in medicine and biology,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
June 2016, Australasian physical & engineering sciences in medicine,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
June 1995, Medical physics,
Bassel Kassas, and Firas Mourtada, and John L Horton, and Richard G Lane, and Thomas A Buchholz, and Eric A Strom
May 1998, Medical physics,
Copied contents to your clipboard!