Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. 2007

Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
Department of Gastroenterological Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.

Nodal signaling induces the formation of the endoderm and mesoderm during gastrulation. Nodal expression persists until the definitive endoderm progenitor has completely formed, and disappears thereafter. A tightly regulated Nodal expression system is essential for the differentiation of embryonic stem (ES) cells into distinct tissue lineages. On this basis, we established an ES cell differentiation system with the tetracycline-regulated expression of Nodal. The upregulated Nodal signaling pathway and its downstream transcriptional targets induced the specification of ES cells into definitive endoderm and mesoderm derivatives, and the subsequent downregulation of Nodal signaling promoted further maturation of the gut tube both in vitro and in vivo. Sustained expression of the Nodal gene inhibited the maturation of the definitive endoderm owing to persistent Oct3 and/or Oct4 expression and teratoma formation. Furthermore, quantitative single cell analysis by flow cytometry using CXCR4, VEGFR2 and PDGFR-alpha indicated that this protocol for definitive endoderm and mesoderm differentiation is superior to any other available protocol. Our findings also indicated that the Nodal or Nodal-related molecules secreted from Nodal-expressing ES cells could cause genetically unmanipulated ES cells to induce the expression of the Nodal signaling pathway and its downstream targets, which consequently leads to the differentiation of the ES cells into definitive endoderm and mesoderm. Our differentiation system, using tightly regulated Nodal expression, enabled us to investigate the mechanism of ES cell differentiation into definitive endoderm or mesoderm derivatives. Our findings also demonstrate that Nodal-expressing ES cells might be a source of highly active proteins that could be used for developing endoderm or mesoderm tissues in regenerative medicine.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
January 2017, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
December 2005, Nature biotechnology,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
February 2009, Stem cells (Dayton, Ohio),
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
January 2012, Results and problems in cell differentiation,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
January 2013, The International journal of developmental biology,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
August 2017, Stem cell reviews and reports,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
June 2007, Developmental dynamics : an official publication of the American Association of Anatomists,
Masanori Takenaga, and Miki Fukumoto, and Yuichi Hori
October 2015, BMC developmental biology,
Copied contents to your clipboard!