| D008958 |
Models, Molecular |
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. |
Molecular Models,Model, Molecular,Molecular Model |
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D015815 |
Cell Adhesion Molecules |
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. |
Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion |
|
| D050556 |
Fatty Acid-Binding Proteins |
Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS. |
Fatty Acid-Binding Protein,Adipocyte Lipid Binding Protein,Adipocyte-Specific Fatty Acid-Binding Protein,Brain-Type Fatty Acid-Binding Protein,Cytosolic Lipid-Binding Proteins,Fatty Acid-Binding Protein, Cardiac Myocyte,Fatty Acid-Binding Protein, Myocardial,Fatty Acid-Binding Proteins, Adipocyte-Specific,Fatty Acid-Binding Proteins, Brain-Specific,Fatty Acid-Binding Proteins, Cytosolic-Specific,Fatty Acid-Binding Proteins, Intestinal-Specific,Fatty Acid-Binding Proteins, Liver-Specific,Fatty Acid-Binding Proteins, Myocardial-Specific,Fatty Acid-Binding Proteins, Plasma-Membrane Specific,Intestinal Fatty Acid-Binding Protein,Liver Fatty Acid-Binding Protein,Myocardial Fatty Acid-Binding Protein,Plasma Membrane Fatty Acid-Binding Protein,Acid-Binding Protein, Fatty,Adipocyte Specific Fatty Acid Binding Protein,Brain Type Fatty Acid Binding Protein,Cytosolic Lipid Binding Proteins,Fatty Acid Binding Protein,Fatty Acid Binding Protein, Cardiac Myocyte,Fatty Acid Binding Protein, Myocardial,Fatty Acid Binding Proteins,Fatty Acid Binding Proteins, Adipocyte Specific,Fatty Acid Binding Proteins, Brain Specific,Fatty Acid Binding Proteins, Cytosolic Specific,Fatty Acid Binding Proteins, Intestinal Specific,Fatty Acid Binding Proteins, Liver Specific,Fatty Acid Binding Proteins, Myocardial Specific,Fatty Acid Binding Proteins, Plasma Membrane Specific,Intestinal Fatty Acid Binding Protein,Lipid-Binding Proteins, Cytosolic,Liver Fatty Acid Binding Protein,Myocardial Fatty Acid Binding Protein,Plasma Membrane Fatty Acid Binding Protein,Protein, Fatty Acid-Binding |
|
| D019906 |
Nuclear Magnetic Resonance, Biomolecular |
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. |
Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR |
|
| D025801 |
Ubiquitin |
A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell. |
APF-1,ATP-Dependent Proteolysis Factor 1,HMG-20,High Mobility Protein 20,Ubiquitin, Human,ATP Dependent Proteolysis Factor 1,Human Ubiquitin |
|