Transition-state variation in human, bovine, and Plasmodium falciparum adenosine deaminases. 2007

Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved using competitive kinetic isotope effects (KIE) and density functional calculations. Adenines labeled at [6-13C], [6-15N], [6-13C, 6-15N], and [1-15N] were synthesized and enzymatically coupled with [1'-14C] ribose to give isotopically labeled adenosines as ADA substrates for KIE analysis. [6-13C], [6-15N], and [1-15N]adenosines reported intrinsic KIE values of (1.010, 1.011, 1.009), (1.005, 1.005, 1.002), and (1.004, 1.001, 0.995) for PfADA, HsADA, and BtADA, respectively. The differences in intrinsic KIEs reflect structural alterations in the transition states. The [1-15N] KIEs and computational modeling results indicate that PfADA, HsADA, and BtADA adopt early SNAr transition states, where N1 protonation is partial and the bond order to the attacking hydroxyl nucleophile is nearly complete. The key structural variation among PfADA, HsADA, and BtADA transition states lies in the degree of N1 protonation with the decreased bond lengths of 1.92, 1.55, and 1.28 A, respectively. Thus, PfADA has the earliest and BtADA has the most developed transition state. This conclusion is consistent with the 20-36-fold increase of kcat in comparing PfADA with HsADA and BtADA.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
May 2012, Journal of molecular graphics & modelling,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
November 2013, The Journal of biological chemistry,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
February 2004, Biochemistry,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
December 1971, Comparative biochemistry and physiology. B, Comparative biochemistry,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
January 1995, Biochimie,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
April 2009, Journal of the American Chemical Society,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
January 2008, Annual review of microbiology,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
July 1974, The American journal of tropical medicine and hygiene,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
Minkui Luo, and Vipender Singh, and Erika A Taylor, and Vern L Schramm
January 2015, Results and problems in cell differentiation,
Copied contents to your clipboard!