Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. 2007

Claudia Barembruch, and Regine Hengge
Institut für Biologie - Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.

In Escherichia coli the flagellar regulon consists of more than 60 genes organized in three hierarchically and temporally regulated transcriptional classes. The flagellar sigma factor FliA (sigma(28)) is responsible for class 3 expression and, in the early phase of flagellar assembly, is inhibited by its anti-sigma factor FlgM. The flagellar hook basal body forms a type III secretion system capable of secreting both flagellar subunits and FlgM. This results in release and therefore activation of FliA and class 3 expression. Here we demonstrate that FliA is also subject to proteolysis which mainly depends on Lon protease. FlgM not only acts as an anti-sigma factor but also protects FliA from being degraded. Based on quantitative measurements over time upon experimental induction of the flagellar cascade as well as during the growth cycle of a motile strain, we show that FliA proteolysis increases in parallel to class 3 expression, i.e. correlates with FlgM secretion and the phase of highest activity of FliA. Thus, when FlgM is not available due to secretion or mutation, and with RNA polymerase interaction being only transient during the transcription initiation cycle, the proteases can degrade FliA. Experiments with a lon mutant indicate that Lon protease and FliA degradation maintain appropriate FliA : FlgM stoichiometry upon induction of the flagellar system and thereby contribute to timely shut-off of this system.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D048168 Escherichia coli K12 A species of gram-negative, rod-shaped bacteria belonging to the K serogroup of ESCHERICHIA COLI. It lives as a harmless inhabitant of the human LARGE INTESTINE and is widely used in medical and GENETIC RESEARCH. E coli K12
D049070 Protease La A prokaryotic ATP-dependent protease that plays a role in the degradation of many abnormal proteins. It is a tetramer of 87-kDa subunits, each of which contains a proteolytic site and a ATP-binding site. Lon Protease,Endopeptidase La

Related Publications

Claudia Barembruch, and Regine Hengge
June 1992, Proceedings of the National Academy of Sciences of the United States of America,
Claudia Barembruch, and Regine Hengge
November 2008, Molecular plant-microbe interactions : MPMI,
Claudia Barembruch, and Regine Hengge
September 2005, Molecular microbiology,
Claudia Barembruch, and Regine Hengge
October 2008, Journal of bacteriology,
Copied contents to your clipboard!