BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling. 2007

Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
Laboratory of Cancer and Developmental Biology National Institutes of Health, Frederick, MD 21702, USA.

In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1a specifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However, inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8 owing to elevated Fgf4 expression. Inactivation of Bmpr1a, Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
February 2000, Developmental biology,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
June 1996, Anatomy and embryology,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
January 1996, The International journal of developmental biology,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
March 2012, Developmental biology,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
June 2016, Development (Cambridge, England),
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
December 1996, Development (Cambridge, England),
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
January 2012, Mechanisms of development,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
January 1997, Hormone research,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
January 2002, The International journal of developmental biology,
Sangeeta Pajni-Underwood, and Catherine P Wilson, and Cindy Elder, and Yuji Mishina, and Mark Lewandoski
June 2010, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!