The mechanisms of tumor suppressor effect of glucocorticoid receptor in skin. 2007

Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
Department of Dermatology, Feinberg Medical School, Northwestern University, Chicago, Illinois 60611, USA.

Glucocorticoid hormones exert a tumor suppressor effect in different experimental models, including mouse skin carcinogenesis. The glucocorticoid control of cellular functions is mediated via the glucocorticoid receptor (GR), a well-known transcription factor that regulates genes by DNA-binding dependent transactivation, and DNA-binding independent transrepression through negative interaction with other transcription factors. In this perspective, we analyze known mechanisms that underlie the anticancer effect of GR signaling, including effects on cell growth, differentiation, apoptosis, and angiogenesis. We also discuss a novel mechanism for the tumor suppressor effect of the GR in skin: through the regulation of the number and status of follicular epithelial stem cells (SC), which are a target cell population for skin carcinogenesis. Our studies on keratin5.GR transgenic animals that are resistant to skin carcinogenesis, demonstrated that the GR diminishes the number of follicular epithelial SCs, reduces their proliferative and survival potential and affects the expression of follicular SC "signature" genes. The analysis of global effect of the GR on gene expression in follicular epithelial SCs, basal keratinocytes, and mouse skin tumors provided an unexpected evidence that gene transrepression by GR plays an important role in the maintenance of SC and in inhibition of skin carcinogenesis by this steroid hormone receptor. It is known that antiinflammatory effect of glucocorticoids is chiefly mediated by GR transrepression. Thus, our findings suggest the similarity between the mechanisms of antiinflammatory and anticancer effects of the GR signaling. We discuss the potential clinical applications of our findings in light of drug discovery programs focused on the development of selective GR modulators that preferentially induce GR transrepression.

UI MeSH Term Description Entries
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D025521 Tumor Suppressor Proteins Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development. Growth Suppressor Proteins,Metastasis Suppressor Protein,Metastasis Suppressor Proteins,Tumor Suppressor Protein,Protein, Metastasis Suppressor,Protein, Tumor Suppressor,Proteins, Growth Suppressor,Proteins, Metastasis Suppressor,Proteins, Tumor Suppressor,Suppressor Protein, Metastasis,Suppressor Protein, Tumor

Related Publications

Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
January 2014, Advances in experimental medicine and biology,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
January 2020, Advances in experimental medicine and biology,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
January 2011, Discovery medicine,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
May 2015, Canadian journal of physiology and pharmacology,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
May 2003, Oncogene,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
January 2013, PloS one,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
April 2012, Molecular cancer research : MCR,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
June 1997, Cancer letters,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
March 1983, Experientia,
Dmitry Chebotaev, and Alexander Yemelyanov, and Irina Budunova
November 2019, Trends in endocrinology and metabolism: TEM,
Copied contents to your clipboard!