Algorithm for dosimetry of multiarc linear-accelerator stereotactic radiosurgery. 1991

G Luxton, and G Jozsef, and M A Astrahan
University of Southern California School of Medicine, Los Angeles 90033.

Treatment planning for multiarc radiosurgery is an inherently complex three-dimensional dosimetry problem. Characteristics of small-field x-ray beams suggest that major simplification of the dose computation algorithm is possible without significant loss of accuracy compared to calculations based on large-field algorithms. The simplification makes it practical to efficiently implement accurate multiplanar dosimetry calculations on a desktop computer. An algorithm is described that is based on data from fixed-beam tissue-maximum-ratio (TMR) and profile measurements at isocenter. The profile for each fixed beam is scaled geometrically according to distance from the x-ray source. Beam broadening due to scatter is taken into account by a simple formula that interpolates the full width at half maximum (FWHM) between profiles at isocenter at different depths in phantom. TMR and profile data for two representative small-field collimators (10- and 25-mm projected diameter) were obtained by TLD and film measurements in a phantom. The accuracy of the calculational method and the associated computer program were verified by TLD and film measurements of noncoplanar multiarc irradiations from these collimators on a 4-MV linear accelerator. Comparison of film measurements in two orthogonal planes showed close agreement with calculations in the shape of the dose distribution. Maximal separation of measured and calculated 90%, 80%, and 50% isodose curves was less than or equal to 0.5 mm for all planes and collimators. All TLD and film measurements of dose to isocenter agreed with calculations to within 2%.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D013819 Thermoluminescent Dosimetry The use of a device composed of thermoluminescent material for measuring exposure to IONIZING RADIATION. The thermoluminescent material emits light when heated. The amount of light emitted is proportional to the amount of ionizing radiation to which the material has been exposed. Dosimetries, Thermoluminescent,Dosimetry, Thermoluminescent,Thermoluminescent Dosimetries
D016634 Radiosurgery A radiological stereotactic technique developed for cutting or destroying tissue by high doses of radiation in place of surgical incisions. It was originally developed for neurosurgery on structures in the brain and its use gradually spread to radiation surgery on extracranial structures as well. The usual rigid needles or probes of stereotactic surgery are replaced with beams of ionizing radiation directed toward a target so as to achieve local tissue destruction. Gamma Knife Radiosurgery,Linear Accelerator Radiosurgery,Stereotactic Body Radiotherapy,Stereotactic Radiosurgery,CyberKnife Radiosurgery,LINAC Radiosurgery,Radiosurgery, Gamma Knife,Radiosurgery, Linear Accelerator,Radiosurgery, Stereotactic,Stereotactic Radiation,Stereotactic Radiation Therapy,CyberKnife Radiosurgeries,Gamma Knife Radiosurgeries,LINAC Radiosurgeries,Linear Accelerator Radiosurgeries,Radiation Therapy, Stereotactic,Radiation, Stereotactic,Radiosurgery, CyberKnife,Radiosurgery, LINAC,Radiotherapy, Stereotactic Body,Stereotactic Body Radiotherapies,Stereotactic Radiation Therapies,Stereotactic Radiations,Stereotactic Radiosurgeries,Therapy, Stereotactic Radiation

Related Publications

G Luxton, and G Jozsef, and M A Astrahan
January 1998, Rays,
G Luxton, and G Jozsef, and M A Astrahan
January 2015, Pain physician,
G Luxton, and G Jozsef, and M A Astrahan
July 1992, Neurologia medico-chirurgica,
G Luxton, and G Jozsef, and M A Astrahan
August 1994, Zhonghua wai ke za zhi [Chinese journal of surgery],
G Luxton, and G Jozsef, and M A Astrahan
January 1985, Applied neurophysiology,
G Luxton, and G Jozsef, and M A Astrahan
December 1996, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
G Luxton, and G Jozsef, and M A Astrahan
March 1994, International journal of radiation oncology, biology, physics,
G Luxton, and G Jozsef, and M A Astrahan
November 1991, Southern medical journal,
G Luxton, and G Jozsef, and M A Astrahan
December 1997, International journal of radiation oncology, biology, physics,
G Luxton, and G Jozsef, and M A Astrahan
January 2012, Journal of cancer research and therapeutics,
Copied contents to your clipboard!