[Non-HFE-related hereditary iron overload]. 2007

Patricia Aguilar-Martinez
Laboratoire d'hématologie, CHU Montpellier, Hôpital Saint-Eloi. p-martinez@chu-montpellier.fr

Hereditary iron overload is mainly due to mutations of the HFE gene, implicated in most cases of hereditary hemochromatosis. Non-HFE-related hereditary iron overload is rare. It includes hereditary hemochromatosis related to mutations of other genes, ferroportin disease (also known as hemochromatosis type 4), and entities associated with specific clinical manifestations. Four genes have been implicated in hereditary hemochromatosis: HFE and TFR2 (which codes for the second transferrin receptor), both involved in adult forms of hereditary hemochromatosis, and HAMP and HJV, which code for hepcidin and hemojuvelin, respectively, and are responsible for juvenile hemochromatosis. All types of hereditary hemochromatosis share common clinical and biological characteristics, including an autosomal recessive inheritance pattern, elevation of transferrin saturation as the initial manifestation, hepatic parenchymal iron overload, and sensitivity to therapeutic phlebotomy. They are due to hyperabsorption of dietary iron and are linked to a deficit of hepcidin, the principal iron regulator in the body. Ferroportin disease is a special dominantly inherited clinical form of iron overload due to mutations of the SLC40A1 gene. Its expression differs significantly from that of hereditary hemochromatosis, and its mechanism is related to impairment of iron release from reticuloendothelial cells. Other causes of non-HFE-related hereditary iron overload are usually associated with recognizable clinical manifestations, such as anemia or neurological disorders.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011990 Receptors, Transferrin Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released. Transferrin Receptors,Transferrin Receptor,Receptor, Transferrin
D006432 Hemochromatosis A disorder of iron metabolism characterized by a triad of HEMOSIDEROSIS; LIVER CIRRHOSIS; and DIABETES MELLITUS. It is caused by massive iron deposits in parenchymal cells that may develop after a prolonged increase of iron absorption. (Jablonski's Dictionary of Syndromes & Eponymic Diseases, 2d ed) Diabetes, Bronze,Bronze Diabetes,Bronzed Cirrhosis,Familial Hemochromatosis,Genetic Hemochromatosis,Haemochromatosis,Hemochromatoses,Iron Storage Disorder,Pigmentary Cirrhosis,Primary Hemochromatosis,Troisier-Hanot-Chauffard Syndrome,Von Recklenhausen-Applebaum Disease,Bronzed Cirrhoses,Cirrhoses, Bronzed,Cirrhoses, Pigmentary,Cirrhosis, Bronzed,Cirrhosis, Pigmentary,Disease, Von Recklenhausen-Applebaum,Diseases, Von Recklenhausen-Applebaum,Disorder, Iron Storage,Disorders, Iron Storage,Familial Hemochromatoses,Genetic Hemochromatoses,Haemochromatoses,Hemochromatose,Hemochromatoses, Familial,Hemochromatoses, Genetic,Hemochromatosis, Familial,Hemochromatosis, Genetic,Iron Storage Disorders,Pigmentary Cirrhoses,Recklenhausen-Applebaum Disease, Von,Recklenhausen-Applebaum Diseases, Von,Storage Disorder, Iron,Storage Disorders, Iron,Syndrome, Troisier-Hanot-Chauffard,Syndromes, Troisier-Hanot-Chauffard,Troisier Hanot Chauffard Syndrome,Troisier-Hanot-Chauffard Syndromes,Von Recklenhausen Applebaum Disease,Von Recklenhausen-Applebaum Diseases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071020 Hemochromatosis Protein A membrane protein and MHC class I antigen. It contains an IMMUNOGLOBULIN C1-SET DOMAIN and interacts with BETA 2-MICROGLOBULIN. It may also regulate the interaction of TRANSFERRIN with the TRANSFERRIN RECEPTOR. Mutations in the HFE gene are associated with cases of FAMILIAL HEMOCHROMATOSIS. HFE Protein,HLA-H Antigen,Antigen, HLA-H,HLA H Antigen
D015395 Histocompatibility Antigens Class I Membrane glycoproteins consisting of an alpha subunit and a BETA 2-MICROGLOBULIN beta subunit. In humans, highly polymorphic genes on CHROMOSOME 6 encode the alpha subunits of class I antigens and play an important role in determining the serological specificity of the surface antigen. Class I antigens are found on most nucleated cells and are generally detected by their reactivity with alloantisera. These antigens are recognized during GRAFT REJECTION and restrict cell-mediated lysis of virus-infected cells. Class I Antigen,Class I Antigens,Class I Histocompatibility Antigen,Class I MHC Protein,Class I Major Histocompatibility Antigen,MHC Class I Molecule,MHC-I Peptide,Class I Histocompatibility Antigens,Class I Human Antigens,Class I MHC Proteins,Class I Major Histocompatibility Antigens,Class I Major Histocompatibility Molecules,Human Class I Antigens,MHC Class I Molecules,MHC-I Molecules,MHC-I Peptides,Antigen, Class I,Antigens, Class I,I Antigen, Class,MHC I Molecules,MHC I Peptide,MHC I Peptides,Molecules, MHC-I,Peptide, MHC-I,Peptides, MHC-I
D023181 Antimicrobial Cationic Peptides Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane. Cationic Antimicrobial Peptide,Cationic Antimicrobial Peptides,Cationic Host Defense Peptides,Host Defense Peptide,Microbicidal Cationic Proteins,Amphipathic Cationic Antimicrobial Peptides,Host Defense Peptides,Antimicrobial Peptide, Cationic,Antimicrobial Peptides, Cationic,Cationic Peptides, Antimicrobial,Cationic Proteins, Microbicidal,Defense Peptide, Host,Defense Peptides, Host,Peptide, Cationic Antimicrobial,Peptide, Host Defense,Peptides, Antimicrobial Cationic,Peptides, Cationic Antimicrobial,Peptides, Host Defense,Proteins, Microbicidal Cationic
D027682 Cation Transport Proteins Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane. Cation Pumps,Cation Pump,Pump, Cation,Pumps, Cation
D064451 Hepcidins Forms of hepcidin, a cationic amphipathic peptide synthesized in the liver as a prepropeptide which is first processed into prohepcidin and then into the biologically active hepcidin forms, including in human the 20-, 22-, and 25-amino acid residue peptide forms. Hepcidin acts as a homeostatic regulators of iron metabolism and also possesses antimicrobial activity. Hepcidin,Liver-Expressed Antimicrobial Peptide,Pro-Hepcidin,Prohepcidin,Antimicrobial Peptide, Liver-Expressed,Liver Expressed Antimicrobial Peptide,Peptide, Liver-Expressed Antimicrobial,Pro Hepcidin

Related Publications

Patricia Aguilar-Martinez
May 2005, Gastroenterologie clinique et biologique,
Patricia Aguilar-Martinez
May 2008, The New England journal of medicine,
Patricia Aguilar-Martinez
May 2008, The New England journal of medicine,
Patricia Aguilar-Martinez
January 2008, The New England journal of medicine,
Patricia Aguilar-Martinez
August 2011, Seminars in liver disease,
Patricia Aguilar-Martinez
March 2014, The Journal of the Association of Physicians of India,
Patricia Aguilar-Martinez
July 2001, Journal of clinical gastroenterology,
Patricia Aguilar-Martinez
January 1999, Gastroenterologie clinique et biologique,
Patricia Aguilar-Martinez
January 2023, The American journal of the medical sciences,
Patricia Aguilar-Martinez
April 2019, Zhongguo shi yan xue ye xue za zhi,
Copied contents to your clipboard!