Improved blood compatibility of rapamycin-eluting stent by incorporating curcumin. 2007

C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
Key Laboratory of Advanced Materials Technology, Education Ministry, Southwest Jiaotong University, Chengdu 610031, China.

This paper dealt with improving the blood compatibility of the rapamycin-eluting stent by incorporating curcumin. The rapamycin- and rapamycin/curcumin-loaded PLGA (poly(d,l-lactic acid-co-glycolic acid)) coatings were fabricated onto the surface of the stainless steel stents using an ultrasonic atomization spray method. The structure of the coating films was characterized by Fourier transform infrared spectroscopy (FTIR). The optical microscopy and scanning electron microscopy (SEM) images of the drug-eluting stents indicated that the surface of all drug-eluting stents was very smooth and uniform, and there were not webbings and "bridges" between struts. There were not any cracks and delaminations on stent surface after expanded by the angioplasty balloon. The in vitro platelet adhesion and activation were investigated by static platelet adhesion test and GMP140 (P-selection), respectively. The clotting time was examined by activated partially prothromplastin time (APTT) test. The fibrinogen adsorption on the drug-loaded PLGA films was evaluated by enzyme-linked immunosorbent assay (ELISA). All obtained data showed that incorporating curcumin in rapamycin-loaded PLGA coating can significantly decrease platelet adhesion and activation, prolong APTT clotting time as well as decrease the fibrinogen adsorption. All results indicated that incorporating curcumin in rapamycin-eluting coating obviously improve the blood compatibility of rapamycin-eluting stents. It was suggested that it may be possible to develop a drug-eluting stent which had the characteristics of not only good anti-proliferation but also improved anticoagulation.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010973 Platelet Adhesiveness The process whereby PLATELETS adhere to something other than platelets, e.g., COLLAGEN; BASEMENT MEMBRANE; MICROFIBRILS; or other "foreign" surfaces. Adhesiveness, Platelet,Adhesivenesses, Platelet,Platelet Adhesivenesses
D011100 Polyglycolic Acid A biocompatible polymer used as a surgical suture material. Polyglycolide,Biofix,Dexon (Polyester),Dexon-S,Dexon S,DexonS
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077182 Polylactic Acid-Polyglycolic Acid Copolymer A co-polymer that consists of varying ratios of polylactic acid and polyglycolic acid. It is used as a matrix for drug delivery and for BONE REGENERATION. PLGA Acid,LactoSorb,PL-PG Copolymer,PLG Polymer,PLGA Compound,Poly (D,L-lactic-co-glycolic Acid),Poly (Lactic-co-glycolic Acid) -,Poly(D,L-lactide-co-glycolide),Poly(DL-lactide-co-glycolic Acid),Poly(Glycolide-co-lactide),Poly(L-lactide)-co-glycolide,Poly(Lactic-co-glycolic Acid),Poly-L-lactic-polyglycolic Acid,Polylactic-co-glycolic Acid Copolymer,RG 502,Acid, PLGA,Acids, PLGA,Copolymer, PL-PG,Copolymer, Polylactic-co-glycolic Acid,Copolymers, PL-PG,Copolymers, Polylactic-co-glycolic Acid,PL PG Copolymer,PL-PG Copolymers,PLG Polymers,PLGA Acids,PLGA Compounds,Poly L lactic polyglycolic Acid,Poly-L-lactic-polyglycolic Acids,Polylactic Acid Polyglycolic Acid Copolymer,Polylactic co glycolic Acid Copolymer,Polylactic-co-glycolic Acid Copolymers,Polymer, PLG,Polymers, PLG

Related Publications

C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
June 2016, Biointerphases,
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
January 2005, Thrombosis research,
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
June 2005, Heart (British Cardiac Society),
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
July 2019, Colloids and surfaces. B, Biointerfaces,
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
January 2015, Materials science & engineering. C, Materials for biological applications,
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
May 2002, European heart journal,
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
April 2002, Heart (British Cardiac Society),
C J Pan, and J J Tang, and Z Y Shao, and J Wang, and N Huang
May 2003, Circulation,
Copied contents to your clipboard!