Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. 2007

Y J Oh, and W Jo, and Y Yang, and S Park
Department of Physics and Division of Nano Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.

Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces.

UI MeSH Term Description Entries
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D001422 Bacterial Adhesion Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity. Adhesion, Bacterial,Adhesions, Bacterial,Bacterial Adhesions
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D018625 Microscopy, Atomic Force A type of scanning probe microscopy in which a probe systematically rides across the surface of a sample being scanned in a raster pattern. The vertical position is recorded as a spring attached to the probe rises and falls in response to peaks and valleys on the surface. These deflections produce a topographic map of the sample. Atomic Force Microscopy,Force Microscopy,Scanning Force Microscopy,Atomic Force Microscopies,Force Microscopies,Force Microscopies, Scanning,Force Microscopy, Scanning,Microscopies, Atomic Force,Microscopies, Force,Microscopies, Scanning Force,Microscopy, Force,Microscopy, Scanning Force,Scanning Force Microscopies
D019453 Escherichia coli O157 A verocytotoxin-producing serogroup belonging to the O subfamily of Escherichia coli which has been shown to cause severe food-borne disease. A strain from this serogroup, serotype H7, which produces SHIGA TOXINS, has been linked to human disease outbreaks resulting from contamination of foods by E. coli O157 from bovine origin. E coli O157,E coli O157-H7,Escherichia coli O157-H7

Related Publications

Y J Oh, and W Jo, and Y Yang, and S Park
July 1995, International journal of food microbiology,
Y J Oh, and W Jo, and Y Yang, and S Park
February 2010, Applied and environmental microbiology,
Y J Oh, and W Jo, and Y Yang, and S Park
May 2007, Applied and environmental microbiology,
Y J Oh, and W Jo, and Y Yang, and S Park
January 2014, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Y J Oh, and W Jo, and Y Yang, and S Park
January 2004, Letters in applied microbiology,
Y J Oh, and W Jo, and Y Yang, and S Park
January 2014, Journal of natural products,
Y J Oh, and W Jo, and Y Yang, and S Park
September 2019, Journal of bacteriology,
Y J Oh, and W Jo, and Y Yang, and S Park
January 2011, Environmental microbiology,
Y J Oh, and W Jo, and Y Yang, and S Park
February 2011, FEMS microbiology letters,
Copied contents to your clipboard!