Mifepristone inhibits ovarian cancer cell growth in vitro and in vivo. 2007

Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA.

OBJECTIVE These studies were designed to determine whether the synthetic steroid mifepristone inhibits ovarian cancer growth in vitro and in vivo and the molecular mechanisms involved. METHODS The effect of mifepristone on ovarian cancer cell growth in vitro was studied in ovarian cancer cell lines of different genetic backgrounds (SK-OV-3, Caov-3, OV2008, and IGROV-1). In addition, the growth inhibition capacity of mifepristone on ovarian carcinoma xenografts was tested in nude mice. RESULTS Mifepristone inhibited ovarian cancer cell proliferation in a dose- and time-dependent manner. The cytostatic effect of mifepristone was confirmed in a clonogenic survival assay and was not linked to loss of viability. Mifepristone blocked DNA synthesis, arrested the cell cycle at the G(1)-S transition, up-regulated cyclin-dependent kinase (cdk) inhibitors p21(cip1)and p27(kip1), down-regulated transcription factor E2F1, decreased expression of the E2F1-regulated genes cdk1 (cdc2) and cyclin A, and modestly decreased cdk2 and cyclin E levels. The abrupt arrest in cell growth induced by mifepristone correlated with reduced cdk2 activity, increased association of cdk2 with p21(cip1) and p27(kip1), increased nuclear localization of the cdk inhibitors, and reduced nuclear abundance of cdk2 and cyclin E. In vivo, mifepristone significantly delayed the growth of ovarian carcinoma xenografts in a dose-dependent manner and without apparent toxic effects for the animals. CONCLUSIONS These preclinical studies show that mifepristone is effective as a single agent in vitro and in vivo, inhibiting the growth of human epithelial ovarian cancer cells. Mifepristone markedly reduces cdk2 activity likely due to increased association of cdk2 with the cdk inhibitors p21(cip1) and p27(kip1) and reduced nuclear cdk2/cyclin E complex availability. Acting as a cytostatic agent, mifepristone promises to be of translational significance in ovarian cancer therapeutics.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D015735 Mifepristone A progestational and glucocorticoid hormone antagonist. Its inhibition of progesterone induces bleeding during the luteal phase and in early pregnancy by releasing endogenous prostaglandins from the endometrium or decidua. As a glucocorticoid receptor antagonist, the drug has been used to treat hypercortisolism in patients with nonpituitary CUSHING SYNDROME. Mifegyne,Mifeprex,Mifégyne,R-38486,R38486,RU-38486,RU-486,ZK-98296,ZK98296,R 38486,RU 38486,RU 486,RU38486,RU486,ZK 98296
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular

Related Publications

Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
August 2008, Cancer letters,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
September 2016, Journal of hematology & oncology,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
January 2019, Frontiers in oncology,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
March 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
January 2018, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
August 2013, Molecular medicine reports,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
April 2007, Biochemical and biophysical research communications,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
June 2008, Acta biochimica et biophysica Sinica,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
January 2018, American journal of translational research,
Alicia A Goyeneche, and Rubén W Carón, and Carlos M Telleria
August 2011, Urology,
Copied contents to your clipboard!