Endocytosis at ribbon synapses. 2007

Lisamarie LoGiudice, and Gary Matthews
Program in Neuroscience, Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.

Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011992 Endosomes Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. Receptosomes,Endosome,Receptosome
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D022161 Transport Vesicles Vesicles that are involved in shuttling cargo from the interior of the cell to the cell surface, from the cell surface to the interior, across the cell or around the cell to various locations. Endocytic Vesicles,Endocytic Vesicle,Transport Vesicle,Vesicle, Endocytic,Vesicle, Transport,Vesicles, Endocytic,Vesicles, Transport

Related Publications

Lisamarie LoGiudice, and Gary Matthews
April 2018, The Journal of general physiology,
Lisamarie LoGiudice, and Gary Matthews
November 2005, Progress in retinal and eye research,
Lisamarie LoGiudice, and Gary Matthews
August 2003, Current biology : CB,
Lisamarie LoGiudice, and Gary Matthews
September 2007, Traffic (Copenhagen, Denmark),
Lisamarie LoGiudice, and Gary Matthews
April 2014, Science China. Life sciences,
Lisamarie LoGiudice, and Gary Matthews
May 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Lisamarie LoGiudice, and Gary Matthews
May 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Lisamarie LoGiudice, and Gary Matthews
January 2021, Frontiers in aging neuroscience,
Lisamarie LoGiudice, and Gary Matthews
April 2019, International journal of molecular sciences,
Lisamarie LoGiudice, and Gary Matthews
August 2000, Immunology and cell biology,
Copied contents to your clipboard!