[The roles of histone lysine methylation in epigenetic regulation]. 2007

Ting-Ting Du, and Qiu-Hua Huang
State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong Uni-versity, Shanghai 200025, China.

Histone lysine methylation plays a key role in epigenetic regulation.There are five lysines within histone H3(K4, K9, K27, K36, K79). Besides, one lysine within histone H4(K20) has been shown to be methylated by specific histone lysine methyltransferase. Methylation at H3-K9 is associated with transcriptional repression, while methylation at H3-K4 and H3-K36 is associated with transcriptional activation. The methylation of histone H3-K27 was proved to be linked to several silencing phenomena including homeotic-gene silencing, X inactivation and genomic imprinting. H3-K79 methylation plays a role in DNA repair and transcriptional activation, and the extent and biological significance of histone de-methylation will surely attract great attention.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011495 Histone-Lysine N-Methyltransferase An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. Protein Lysine Methyltransferase,Protein Methylase III,Protein Methyltransferase III,Histone-Lysine Methyltransferase,Histone Lysine Methyltransferase,Histone Lysine N Methyltransferase,Methyltransferase, Histone-Lysine,Methyltransferase, Protein Lysine,N-Methyltransferase, Histone-Lysine
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D044127 Epigenesis, Genetic A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression. Epigenetic Processes,Epigenetic Process,Epigenetics Processes,Genetic Epigenesis,Process, Epigenetic,Processes, Epigenetic,Processes, Epigenetics

Related Publications

Ting-Ting Du, and Qiu-Hua Huang
January 2007, Biochimie,
Ting-Ting Du, and Qiu-Hua Huang
July 2010, Heredity,
Ting-Ting Du, and Qiu-Hua Huang
February 2012, Zhongguo shi yan xue ye xue za zhi,
Ting-Ting Du, and Qiu-Hua Huang
February 2009, Biological psychiatry,
Ting-Ting Du, and Qiu-Hua Huang
July 2006, The FEBS journal,
Ting-Ting Du, and Qiu-Hua Huang
April 2013, Cell death & disease,
Ting-Ting Du, and Qiu-Hua Huang
February 2010, Epigenomics,
Ting-Ting Du, and Qiu-Hua Huang
April 2023, Current protocols,
Ting-Ting Du, and Qiu-Hua Huang
March 2013, Nucleic acids research,
Ting-Ting Du, and Qiu-Hua Huang
June 2003, Journal of cell science,
Copied contents to your clipboard!