Dimethyl sulphoxide relaxes rabbit detrusor muscle by decreasing the Ca2+ sensitivity of the contractile apparatus. 2007

K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
Division of Molecular Cardiology, Research Institute of Angiocardiology, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

OBJECTIVE The intravesical administration of dimethyl sulphoxide (DMSO) is used to alleviate the symptoms of interstitial cystitis. We investigated the relaxant effect of DMSO and its underlying mechanism in the detrusor muscle. METHODS The effects of DMSO on contraction, on Ca2+ sensitivity of myofilaments, and on myosin light chain (MLC) phosphorylation were investigated in both intact and alpha-toxin-permeabilized strips of rabbit detrusor muscle. RESULTS In fura-PE3-loaded strips, DMSO (>1%) induced a significant relaxation during sustained contractions induced by 60 mM K+-depolarization or 10 microM carbachol, while having no effect on the [Ca2+](i) level. DMSO decreased the level of MLC phosphorylation during the contractions induced by 60 mM K+ and 10 microM carbachol. DMSO also inhibited both the contraction and MLC phosphorylation induced by calyculin-A in intact strips. In the alpha-toxin-permeabilized preparations, DMSO relaxed the Ca2+-induced contraction and also inhibited the tension development induced by a stepwise increment of Ca2+ concentrations. Such a relaxant effect of DMSO was enhanced in the presence of phosphate. CONCLUSIONS DMSO relaxes rabbit detrusor muscle by decreasing the Ca2+ sensitivity of myofilaments. Inhibition of the kinase activities involved in myosin phosphorylation may play a major role in DMSO-induced Ca2+ desensitization. Inhibition of the cross-bridge cycling at the step of phosphate release may also contribute to the relaxant effect of DMSO. Such relaxant effects of DMSO could be linked to the therapeutic effect of DMSO in interstitial cystitis.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus

Related Publications

K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
May 1998, Masui. The Japanese journal of anesthesiology,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
June 1992, The Journal of clinical investigation,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
August 1991, The Journal of physiology,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
January 2007, Fukuoka igaku zasshi = Hukuoka acta medica,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
September 2001, The Biochemical journal,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
January 1991, Acta physiologica Hungarica,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
December 2001, British journal of pharmacology,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
November 1996, European journal of pharmacology,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
July 1970, Archives internationales de pharmacodynamie et de therapie,
K-i Shiga, and K Hirano, and J Nishimura, and N Niiro, and S Naito, and H Kanaide
January 1993, The Journal of physiology,
Copied contents to your clipboard!