[Intracellular signaling pathways of synovial fibroblasts in rheumatoid arthritis]. 2007

A Korb, and M Peters, and I Meinecke, and T Pap
Bereich molekulare Medizin des Muskuloskelettalen Systems, Universitätsklinikum Münster, Domagkstrasse 3, 48129 Münster.

Rheumatoid arthritis (RA) is a chronic autoimmune disease of still unknown etiology that results in characteristic destructive changes of the joints. Research of the past years has demonstrated that synovial fibroblasts play a central role in the initiation and perpetuation of these destructive changes. Stimulation of the synovial fibroblasts through complex and interacting intracellular signaling pathways results in a stable activation that is maintain even without continuous stimulation by inflammatory cells and their mediators. The pathological attachment to articular cartilage, increased secretion of matrix degrading enzymes and alterations in programmed cell death are main characteristics of synovial fibroblasts from patients with RA and result in the progressive destruction of articular structures. The permanent activation of a number of intracellular signaling pathways constitutes the underlying responsible mechanism for the activation of synovial fibroblasts in RA. These signaling pathways do not only show a high degree of complexity, but are also interconnected in multiple ways. This article summarizes recent findings on the activation of intracellular signaling pathways in fibroblasts and points to potential targets for novel therapeutic strategies.

UI MeSH Term Description Entries
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001172 Arthritis, Rheumatoid A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated. Rheumatoid Arthritis
D013583 Synovial Membrane The inner membrane of a joint capsule surrounding a freely movable joint. It is loosely attached to the external fibrous capsule and secretes SYNOVIAL FLUID. Synovium,Membrana Synovialis Capsulae Articularis,Membrane, Synovial,Membranes, Synovial,Synovial Membranes
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D018448 Models, Immunological Theoretical representations that simulate the behavior or activity of immune system, processes, or phenomena. They include the use of mathematical equations, computers, and other electrical equipment. Immunological Models,Immunologic Model,Model, Immunologic,Immunologic Models,Immunological Model,Model, Immunological,Models, Immunologic

Related Publications

A Korb, and M Peters, and I Meinecke, and T Pap
August 2013, Journal of clinical & cellular immunology,
A Korb, and M Peters, and I Meinecke, and T Pap
March 2012, Arthritis research & therapy,
A Korb, and M Peters, and I Meinecke, and T Pap
November 2001, Journal of immunology (Baltimore, Md. : 1950),
A Korb, and M Peters, and I Meinecke, and T Pap
September 2011, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
A Korb, and M Peters, and I Meinecke, and T Pap
January 2015, Current pharmaceutical design,
A Korb, and M Peters, and I Meinecke, and T Pap
June 1995, Annals of the rheumatic diseases,
A Korb, and M Peters, and I Meinecke, and T Pap
May 2009, Nature reviews. Rheumatology,
A Korb, and M Peters, and I Meinecke, and T Pap
May 2000, Annals of the rheumatic diseases,
Copied contents to your clipboard!