The calponin homology domain of Vav1 associates with calmodulin and is prerequisite to T cell antigen receptor-induced calcium release in Jurkat T lymphocytes. 2007

Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.

Vav1 is a guanine nucleotide exchange factor that is expressed specifically in hematopoietic cells and plays important roles in T cell development and activation. Vav1 consists of multiple structural domains so as to facilitate both its guanine nucleotide exchange activity and scaffold function following T cell antigen receptor (TCR) engagement. Previous studies demonstrated that the calponin homology (CH) domain of Vav1 is required for TCR-stimulated calcium mobilization and thus downstream activation of nuclear factor of activated T cells. However, it remained obscure how Vav1 functions in regulating calcium flux. In an effort to explore molecules interacting with Vav1, we found that calmodulin bound to Vav1 in a calcium-dependent and TCR activation-independent manner. The binding site was mapped to the CH domain of Vav1. Reconstitution of vav1-null Jurkat T cells (J.Vav1) with CH-deleted Vav1 exhibited a severe deficiency in calcium release to the same extent as that of Jurkat cells treated with the calmodulin inhibitor or J.Vav1 cells. The defect persisted even when phospholipase-Cgamma1 was fully activated, indicating a prerequisite role of Vav1 CH domain in calcium signaling. The results suggest that Vav1 and calmodulin function cooperatively to potentiate TCR-induced calcium release. This study unveiled a mechanism by which the Vav1 CH domain is involved in calcium signaling and provides insight into our understanding of the role of Vav1 in T cell activation.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000096985 Calponins A family of actin binding proteins mostly in smooth muscle. Calponins include most abundant alpha-calponin (h1 or basic); beta-calponin; neutral calponin (h2 calponin); acidic calponin, SM22, and transgelin. Calponin family members have N-terminal single Calponin Homology (CH) domain and multiple C-terminus 23-amino acids long calponin-like repeats called CLICK-23. Calponins participate in modulation of smooth muscle contraction by binding to ACTINS (F- and G-Actins), CALMODULIN and TROPOMYSIN. Calponin,Calponin Family Proteins

Related Publications

Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
November 1992, FEBS letters,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
December 2012, Molecular and cellular biochemistry,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
June 1989, Nature,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
July 2010, Journal of experimental botany,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
December 2002, The Journal of biological chemistry,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
June 2012, The Journal of biological chemistry,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
December 1998, Cellular immunology,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
July 1985, European journal of immunology,
Zhuo Zhou, and Jie Yin, and Zhixun Dou, and Jun Tang, and Cuizhu Zhang, and Youjia Cao
July 1994, The Biochemical journal,
Copied contents to your clipboard!